中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Evolution; international journal of organic evolution 2018-Oct

Testing for latitudinal gradients in defense at the macroevolutionary scale.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Daniel N Anstett
Jeffrey R Ahern
Marc T J Johnson
Juha-Pekka Salminen

关键词

抽象

Plant defenses against herbivores are predicted to evolve to be greater in warmer climates, such as lower latitudes where herbivore pressure is also thought to be higher. Instead, recent findings are often inconsistent with this expectation, suggesting alternative hypotheses are needed. We tested for latitudinal gradients in plant defense evolution at the macroevolutionary scale by characterizing plant chemical defenses across 80 species of the evening primroses, spanning both North and South America. We quantified phenolics in leaves, flowers, and fruits, using advanced analytical chemistry techniques. Dominant individual ellagitannin compounds, total concentrations of ellagitannins, flavonoids, total phenolics, and compound diversity were quantified. Variation in these compounds was predicted with latitude, temperature, precipitation, and continent using phylogenetic generalized least squares (PGLS) multiple regression models. Latitude did not strongly explain variation in chemical defenses. Instead, fruit total ellagitannins, oenothein A, and total phenolics were greater in species inhabiting regions with colder climates. Using analytical chemistry and 80 species in two continents, we show that contrary to classic predictions, concentrations of secondary metabolites are not greater at lower latitudes or in warmer regions. We propose higher herbivore pressure in colder climates and gradients in resource availability as potential drivers of the observed patterns in Oenothera.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge