中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Drug Metabolism 2019

The Metabolism and Disposition of Koumine, Gelsemine and Humantenmine from Gelsemium.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Zi-Yuan Wang
Meng-Ting Zuo
Zhao-Ying Liu

关键词

抽象

Gelsemium is a toxic flowering plant of the Gelsemiaceae family. It is used to treat skin diseases in China, and it is an important medicinal and homeopathic plant in North America. Up to now, more than 200 compounds have been isolated and reported from Gelsemium. More than 120 of these are indole alkaloids, including the main components, koumine, gelsemine and humantenmine which produce the pharmacological and toxicological effects of Gelsemium. However, their clinical application their limited by its narrow therapeutic window. Therefore, it is very important to study the metabolism and disposition of indole alkaloids from Gelsemium before their clinical application. This paper reviews all the reports on the metabolism and disposition of alkaloids isolated from Gelsemium at home and abroad.The metabolism and disposition of alkaloids from Gelsemium were searched by the Web of Science, NCBI, PubMed and some Chinese literature databases.Only koumine, gelsemine and humantenmine have been reported, and few other alkaloids have been described. These studies indicated that the three indole alkaloids are absorbed rapidly, widely distributed in tissues, extensively metabolized and rapidly eliminated. There are species differences in the metabolism of these alkaloids, which is the reason for the differences in their toxicity in animals and humans.This review not only explains the pharmacokinetics of indole alkaloids from Gelsemium but also facilitates further study on their metabolism and mechanism of toxicity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge