中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolic Brain Disease 2007-Dec

The anaplerotic flux and ammonia detoxification in hepatic encephalopathy.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Claudia Zwingmann

关键词

抽象

Metabolic alterations in the brain underly many of the mechanisms leading to acute and chronic Hepatic Encephalopathy (HE). Controversy exists about the role of glutamine accumulation as a causal factor in HE. Glutamine formation contributes to detoxify ammonia, whereby anaplerotic mechanisms in the astrocytes have to be sufficient to replenish Krebs cycle intermediates. The application of ex vivo high-resolution nuclear magnetic resonance (NMR) spectroscopy permits direct measurements of metabolites and different metabolic pathways. Ex vivo (13)C-NMR studies in experimental animal models of acute and chronic HE have provided new insights. In an experimental rat model of ALF, (13)C isotopomer analysis of glucose metabolism showed that alterations of glucose flux through astrocytic pyruvate carboxylase might be linked to the pathogenesis of ALF as a limited anaplerotic flux in the brain, but not in the muscle, correlates with the development of brain edema. Moreover, (13)C-NMR data from a rat model of mild HE demonstrated relative differences in the pathway of glucose through pyruvate carboxylase in thalamus compared to frontal cortex, which might explain the vulnerability of this brain region compared to thalamus. These findings further support that glutamine accumulation might be not the primary cause of neurological symptoms in HE, and show that anaplerotic mechanisms could be essential for ammonia detoxification in HE.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge