中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomaterials Science, Polymer Edition 2008

The human tri-peptide GHK and tissue remodeling.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Loren Pickart

关键词

抽象

Tissue remodeling follows the initial phase of wound healing and stops inflammatory and scar-forming processes, then restores the normal tissue morphology. The human peptide Gly-(L-His)-(L-Lys) or GHK, has a copper 2+ (Cu(2+)) affinity similar to the copper transport site on albumin and forms GHK-Cu, a complex with Cu(2+). These two molecules activate a plethora of remodeling related processes: (1) chemoattraction of repair cells such as macrophages, mast cells, capillary cells; (2) anti-inflammatory actions (suppression of free radicals, thromboxane formation, release of oxidizing iron, transforming growth factor beta-1, tumor necrosis factor alpha and protein glycation while increasing superoxide dismutase, vessel vasodilation, blocking ultraviolet damage to skin keratinocytes and improving fibroblast recovery after X-ray treatments); (3) increases protein synthesis of collagen, elastin, metalloproteinases, anti-proteases, vascular endothelial growth factor, fibroblast growth factor 2, nerve growth factor, neutrotropins 3 and 4, and erythropoietin; (4) increases the proliferation of fibroblasts and keratinocytes; nerve outgrowth, angiogenesis, and hair follicle size. GHK-Cu stimulates wound healing in numerous models and in humans. Controlled studies on aged skin demonstrated that it tightens skin, improves elasticity and firmness, reduces fine lines, wrinkles, photodamage and hyperpigmentation. GHK-Cu also improves hair transplant success, protects hepatic tissue from tetrachloromethane poisoning, blocks stomach ulcer development, and heals intestinal ulcers and bone tissue. These results are beginning to define the complex biochemical processes that regulate tissue remodeling.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge