中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2002-Aug

The role of calcium in oligogalacturonide-activated signalling in soybean cells.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Lorella Navazio
Roberto Moscatiello
Daniela Bellincampi
Barbara Baldan
Flavio Meggio
Marisa Brini
Chris Bowler
Paola Mariani

关键词

抽象

Alpha-1,4-Linked oligogalacturonides (OGs) are pectic fragments of the plant cell wall that are perceived by the plant cell as signalling molecules. Using cytosolic aequorin-expressing soybean (Glycine max L.) cells, we have analysed cytosolic Ca(2+) changes and the oxidative burst induced by OGs with different degrees of polymerization. Our results provide evidence that different OGs are sensed through transient elevations of cytosolic Ca(2+) that show different kinetics. Specificity of the Ca(2+) signature relies also on the precise structural characteristics of the OG molecules, such as the methylesterification of galacturonic acid residues and the steric conformation. Inhibition of the OG-induced Ca(2+) transient also blocks the oxidative burst, indicating that the cytosolic Ca(2+) increase is one of the earliest steps in OG-activated signalling. However, a phosphorylation event seems to precede the Ca(2+) rise, because the Ca(2+) transient could be abolished by the protein kinase inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). A pharmacological approach with different antagonists that interfere with the induction of the cytosolic Ca(2+) rise indicates that both extracellular Ca(2+) influx and intracellular Ca(2+) release participate in transducing the OG signal. Treatment of cells with OGs establishes a refractory state, which impairs the ability of the cell to respond to a second stimulus with the same elicitor for up to 16 h. This desensitization period could be prolonged with the phosphatase inhibitor okadaic acid, and eliminated with the protein kinase inhibitor Ro 31-8220, suggesting that phosphorylation events may be involved in the establishment of the cell refractory state.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge