中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Thyroid 2000-Feb

The thyroxine-binding proteins.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
G C Schussler

关键词

抽象

The slow clearance, prolonged half-life, and high serum concentration of thyroxine (T4) are largely due to strong binding by the principal plasma thyroid hormone-binding proteins, thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin. These proteins, which shield the hydrophobic thyroid hormones from their aqueous environment, buffer a stable free T4 concentration for cell uptake. Free rather than bound T4 is subject to homeostatic control by the hypothalamic-pituitary thyroid axis. Although it is not a protease inhibitor, sequence analysis identifies TBG as a member of the serine protease inhibitor (serpin) family of proteins. Proteolytic cleavage of TBG appears to be a mechanism for site-specific release of T4 independently of homeostatic control. TBG probably facilitates the transport of maternal T4 and iodide to the fetus, although this remains to be proven. High-affinity cellular binding sites for TTR have been described; however, their function and that of choroid plexus synthesis of TTR and transport of T4 into the cerebrospinal fluid remain unclear. Albumin, with the lowest T4 affinity and fastest T4 release of the major T4-binding proteins may promote quick exchange of T4 with tissue sites. The affinity of albumin for T4 is increased by histidine substitution for arginine 218 in the most common form of dysalbuminemic hyperthyroxinemia. However, proline and alanine substitutions at the same site have a similar effect, suggesting that arginine 218 interferes with T4 binding.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge