中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Obesity research 2005-May

Triglyceride-lowering effect of respiratory uncoupling in white adipose tissue.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Martin Rossmeisl
Jan Kovar
Ivo Syrovy
Pavel Flachs
Dagmar Bobkova
Frantisek Kolar
Rudolf Poledne
Jan Kopecky

关键词

抽象

OBJECTIVE

Hypolipidemic drugs such as bezafibrate and thiazolidinediones are known to induce the expression of mitochondrial uncoupling proteins (UCPs) in white adipose tissue. To analyze the potential triglyceride (TG)-lowering effect of respiratory uncoupling in white fat, we evaluated systemic lipid metabolism in aP2-Ucp1 transgenic mice with ectopic expression of UCP1 in adipose tissue.

METHODS

Hemizygous and homozygous transgenic mice and their nontransgenic littermates were fed chow or a high-fat diet for up to 3 months. Total TGs, nonesterified fatty acids, and the composition of plasma lipoproteins were analyzed. Hepatic TG production was measured in mice injected with Triton WR1339. Uptake and the use of fatty acids were estimated by measuring adipose tissue lipoprotein lipase activity and fatty acid oxidation, respectively. Adipose tissue gene expression was assessed by quantitative reverse transcriptase-polymerase chain reaction.

RESULTS

Transgene dosage and the high-fat diet interacted to markedly reduce plasma TGs. This was reflected by decreased concentrations of very-low-density lipoprotein particles in the transgenic mice. Despite normal hepatic TG secretion, the activity of lipoprotein lipase in epididymal fat was enhanced by the high-fat diet in the transgenic mice in a setting of decreased re-esterification and increased in situ fatty acid oxidation.

CONCLUSIONS

Respiratory uncoupling in white fat may lower plasma lipids by enhancing their in situ clearance and catabolism.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge