中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anticancer Research

Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Shahead Ali Chowdhury
Kaori Kishino
Rie Satoh
Ken Hashimoto
Hirotaka Kikuchi
Hirofumi Nishikawa
Yoshiaki Shirataki
Hiroshi Sakagami

关键词

抽象

A total of eleven stilbenes [1-6] and flavonoids [7-11] were investigated for their tumor- specific cytotoxicity and apoptosis-inducing activity, using four human tumor cell lines (squamous cell carcinoma HSC-2, HSC-3, submandibular gland carcinoma HSG and promyelocytic leukemia HL-60) and three normal human oral cells (gingival fibroblast HGF, pulp cell HPC, periodontal ligament fibroblast HPLF). All of the compounds, especially sophorastilbene A [1], (+)-alpha-viniferin [2], piceatannol [5], quercetin [9] and isoliquiritigenin [10], showed higher cytotoxicity against the tumor cell lines than normal cells, yielding tumor-specific indices of 3.6, 4.7, >3.5, >3.3 and 4.0, respectively. Among the seven cell lines, HSC-2 and HL-60 cells were the most sensitive to the cytotoxic action of these compounds. Sophorastilbene A [1], piceatannol [5], quercetin [9] and isoliquiritigenin [10] induced internucleosomal DNA fragmentation and activation of caspases -3, -8 and -9 dose-dependently in HL-60 cells. (+)-alpha-Viniferin [2] showed similar activity, but only at higher concentrations. All the compounds failed to induce DNA fragmentation and activated caspases to much lesser extents in HSC-2 cells. Western blot analysis showed that sophorastilbene A [1], piceatannol [5] and quercetin [9] did not induce any consistent changes in the expression of pro-apoptotic proteins (Bax, Bad) and antiapoptotic protein (Bcl-2) in HL-60 and HSC-2 cells. An undetectable expression of Bcl-2 protein in control and drug-treated HSC-2 cells may explain the relatively higher sensitivity of this cell line to stilbenes and flavonoids.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge