中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2007-Jan

Ultrafast and ultraslow oxygen atom transfer reactions between late metal centers.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Kevin C Fortner
David S Laitar
John Muldoon
Lihung Pu
Sonja B Braun-Sand
Olaf Wiest
Seth N Brown

关键词

抽象

Oxotrimesityliridium(V), (mes)3Ir=O (mes = 2,4,6-trimethylphenyl), and trimesityliridium(III), (mes)3Ir, undergo extremely rapid degenerate intermetal oxygen atom transfer at room temperature. At low temperatures, the two complexes conproportionate to form (mes)3Ir-O-Ir(mes)3, the 2,6-dimethylphenyl analogue of which has been characterized crystallographically. Variable-temperature NMR measurements of the rate of dissociation of the mu-oxo dimer combined with measurements of the conproportionation equilibrium by low-temperature optical spectroscopy indicate that oxygen atom exchange between iridium(V) and iridium(III) occurs with a rate constant, extrapolated to 20 degrees C, of 5 x 107 M-1 s-1. The oxotris(imido)osmium(VIII) complex (ArN)3Os=O (Ar = 2,6-diisopropylphenyl) also undergoes degenerate intermetal atom transfer to its deoxy partner, (ArN)3Os. However, despite the fact that its metal-oxygen bond strength and reactivity toward triphenylphosphine are nearly identical to those of (mes)3Ir=O, the osmium complex (ArN)3Os=O transfers its oxygen atom 12 orders of magnitude more slowly to (ArN)3Os than (mes)3Ir=O does to (mes)3Ir (kOsOs = 1.8 x 10-5 M-1 s-1 at 20 degrees C). Iridium-osmium cross-exchange takes place at an intermediate rate, in quantitative agreement with a Marcus-type cross relation. The enormous difference between the iridium-iridium and osmium-osmium exchange rates can be rationalized by an analogue of the inner-sphere reorganization energy. Both Ir(III) and Ir(V) are pyramidal and can form pyramidal iridium(IV) with little energetic cost in an orbitally allowed linear approach. Conversely, pyramidalization of the planar tris(imido)osmium(VI) fragment requires placing a pair of electrons in an antibonding orbital. The unique propensity of (mes)3Ir=O to undergo intermetal oxygen atom transfer allows it to serve as an activator of dioxygen in cocatalyzed oxidations, for example, acting with osmium tetroxide to catalyze the aerobic dihydroxylation of monosubstituted olefins and selective oxidation of allyl and benzyl alcohols.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge