中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1990-Apr

Uptake and accumulation of the herbicide bentazon by cultured plant cells.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
T M Sterling
N E Balke
D S Silverman

关键词

抽象

Cellular absorption of the herbicide bentazon, a weak acid with pK(a) 3.45, was investigated using suspension-cultured cells of velvetleaf (Abutilon theophrasti Medic.). Bentazon accumulated rapidly to concentrations approximately four times that of the external medium. Bentazon accumulation against a concentration gradient was not due to its conversion to metabolites, partitioning into lipids, or binding onto cellular constituents. Bentazon uptake was related linearly to the external bentazon concentration, implying that movement of the herbicide into cells was not carrier-mediated. Bentazon was able to diffuse freely and extensively out of the cells, indicating that bentazon can readily diffuse across cell membranes. Potassium cyanide and carbonyl cyanide m-chlorophenyl hydrazone inhibited bentazon accumulation as did nitrogen gas when bubbled through the uptake medium. Absorption was pH-dependent with the greatest amount of bentazon accumulating at acidic external pH. Calculations indicated that conversion of uncharged bentazon to bentazon anion in the cytoplasm accounts for cellular accumulation of bentazon. These results provide evidence that bentazon is absorbed across membranes via simple diffusion and that bentazon accumulates in plant cells via an energy-dependent, ion-trapping mechanism which results in bentazon accumulation in the cytoplasm.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge