中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research - Part B Applied Biomaterials 2008-Feb

Use of electrochemical impedance spectroscopy to evaluate resin-dentin bonds.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jeremy Sword
David H Pashley
Stephen Foulger
Franklin R Tay
Robert Rodgers

关键词

抽象

Electrochemical impedance spectroscopy (EIS) offers a potentially nondestructive quantitative method for measuring the stability of resin films and or resin-bonded dentin over time. The purpose of this study was to measure the electrical impedance of five experimental dental adhesives of increasing hydrophicities as 30-microm films and as resin-bonded coatings on acid-etched dentin. Resin films or resin-coated dentin disks were placed in U-shaped chambers containing pairs of Ag-AgCl electrodes in 0.1M KCl. Electrical impedance spectra were run at day 0, 1, 7, 14, and 21 days. All resin films and resin-bonded dentin showed increases in capacitance during the first day of storage in electrolyte. This was usually associated with an increase in the pore resistance of the resins. Generally, resin-bonded dentin gave lower impedance values than their respective resins (resins 1-4) but solvated resin 5 bonded to water-saturated dentin gave higher capacitance and impedance values than resin 5 films. However, solvated resin 5 films gave higher impedance values than resin 5-bonded dentin. This behavior was confirmed by TEM examinations of silver uptake into films of neat resin 5 vs. ethanol-solvated resin 5, where water tree-like structures seen in the former were not seen in the latter. EIS is useful in examining changes in the capacitance and electrical impedance of very hydrophilic, ionic methacrylate resins. Its utility in detecting degradation in resin-bonded dentin interfaces remains to be determined in longer term studies.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge