中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2004-Oct

Variation in transcript abundance during somatic embryogenesis in gymnosperms.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Claudio Stasolla
Peter V Bozhkov
Tzu-Ming Chu
Leonel Van Zyl
Ulrika Egertsdotter
Maria F Suarez
Deborah Craig
Russ D Wolfinger
Sara Von Arnold
Ronald R Sederoff

关键词

抽象

Somatic embryogenesis of Norway spruce (Picea abies L.) is a versatile model system to study molecular mechanisms regulating embryo development because it proceeds through defined developmental stages corresponding to specific culture treatments. Normal embryonic development involves early differentiation of proembryogenic masses (PEMs) into somatic embryos, followed by early and late embryogeny leading to the formation of mature cotyledonary embryos. In some cell lines there is a developmental arrest at the PEM-somatic embryo transition. To learn more about the molecular mechanisms regulating embryogenesis, we compared the transcript profiles of two normal lines and one developmentally arrested line. Ribonucleic acid, extracted from these cell lines at successive developmental stages, was analyzed on DNA microarrays containing 2178 expressed sequence tags (ESTs) (corresponding to 2110 unique cDNAs) from loblolly pine (Pinus taeda L.). Hybridization between spruce and pine species on microarrays has been shown to be effective (van Zyl et al. 2002, Stasolla et al. 2003). In contrast to the developmentally arrested line, the early phases of normal embryo development are characterized by a precise pattern of gene expression, i.e., repression followed by induction. Comparison of transcript levels between successive stages of embryogenesis allowed us to identify several genes that showed unique expression responses during normal development. Several of these genes encode proteins involved in detoxification processes, methionine synthesis and utilization, and carbohydrate metabolism. The potential role of these genes in embryo development is discussed.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge