中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Orthopaedics and Related Research 2011-Aug

Vitamin E-stabilized UHMWPE for total joint implants: a review.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Pierangiola Bracco
Ebru Oral

关键词

抽象

BACKGROUND

Osteolysis due to wear of UHMWPE limits the longevity of joint arthroplasty. Oxidative degradation of UHMWPE gamma-sterilized in air increases its wear while decreasing mechanical strength. Vitamin E stabilization of UHMWPE was proposed to improve oxidation resistance while maintaining wear resistance and fatigue strength.

OBJECTIVE

We reviewed the preclinical research on the development and testing of vitamin E-stabilized UHMWPE with the following questions in mind: (1) What is the rationale behind protecting irradiated UHMWPE against oxidation by vitamin E? (2) What are the effects of vitamin E on the microstructure, tribologic, and mechanical properties of irradiated UHMWPE? (3) Is vitamin E expected to affect the periprosthetic tissue negatively?

METHODS

We performed searches in PubMed, Scopus, and Science Citation Index to review the development of vitamin E-stabilized UHMWPEs and their feasibility as clinical implants.

RESULTS

The rationale for using vitamin E in UHMWPE was twofold: improving oxidation resistance of irradiated UHMWPEs and fatigue strength of irradiated UHMWPEs with an alternative to postirradiation melting. Vitamin E-stabilized UHMWPE showed oxidation resistance superior to that of irradiated UHMWPEs with detectable residual free radicals. It showed equivalent wear and improved mechanical strength compared to irradiated and melted UHMWPE. The biocompatibility was confirmed by simulating elution, if any, of the antioxidant from implants.

CONCLUSIONS

Vitamin E-stabilized UHMWPE offers a joint arthroplasty technology with good mechanical, wear, and oxidation properties.

CONCLUSIONS

Vitamin E-stabilized, irradiated UHMWPEs were recently introduced clinically. The rationale behind using vitamin E and in vitro tests comparing its performance to older materials are of great interest for improving longevity of joint arthroplasties.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge