中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Pharmacology 2012-Jan

Zoledronate and pamidronate depress neutrophil functions and survival in mice.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
J W P Kuiper
C Forster
C Sun
S Peel
M Glogauer

关键词

抽象

OBJECTIVE

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) has been identified as a severe complication of patients previously treated with i.v. bisphosphonates. It has been noted that necrotic bone from BRONJ sites display signs of bacterial infection suggesting that an immune defect may play a role in the pathophysiology of BRONJ. Here, we have examined the effect of two potent bisphosphonates, zoledronate and pamidronate, on neutrophil function, differentiation and survival.

METHODS

The effect of bisphosphonates on chemotaxis, NADPH oxidase activity and neutrophil survival were assessed in vitro using bone marrow-derived primary neutrophils or in vitro differentiated haematopoetic progenitors from mice. The same parameters and the number of circulating neutrophils were quantified in neutrophils isolated from mice treated in vivo with zoledronate. In vivo recruitment of neutrophils was assessed by sodium periodate-induced peritonitis.

RESULTS

Zoledronate and pamidronate inhibited in vitro neutrophil chemotaxis and NADPH oxidase activity in a dose-dependent manner. In vivo recruitment of neutrophils was also suppressed. Zoledronate did not affect in vitro differentiation of neutrophils but shortened their life span in a granulocyte-colony stimulating factor-dependent manner. fMLP-induced activation of RhoA activity was decreased by zoledronate treatment.

CONCLUSIONS

Our results show that bisphosphonate exposure leads to impaired neutrophil chemotaxis, neutrophil NADPH oxidase activity and reduced circulating neutrophil counts. This work suggests that bisphosphonates have the potential to depress the innate immune system for a prolonged time, possibly contributing to the pathogenesis of BRONJ.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge