中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2020-Jun

A novel cylindrical overlap-and-fling mechanism used by sea butterflies

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Ferhat Karakas
Amy Maas
David Murphy

关键词

抽象

The clap-and-fling mechanism is a well-studied, unsteady lift generation mechanism widely used by flying insects and is considered obligatory for tiny insects flying at low to intermediate Re However, some aquatic zooplankters including some pteropod (i.e. sea butterfly) and heteropod species swimming at low to intermediate Re also use the clap-and-fling mechanism. These marine snails have extremely flexible, actively deformed, muscular wings which they flap reciprocally to create propulsive force, and these wings may enable novel lift generation mechanisms not available to insects, which have less flexible, passively deformed wings. Using high-speed stereophotogrammetry and micro-particle image velocimetry, we describe a novel cylindrical overlap-and-fling mechanism used by the pteropod species Cuvierina atlantica In this maneuver, the pteropod's wingtips overlap at the end of each half-stroke to sequentially form a downward-opening cone, a cylinder, and an upward-opening cone. The transition from downward-opening cone to cylinder produces a downward-directed jet at the trailing edges. Similarly, the transition from cylinder to upward-opening cone produces downward flow into the gap between the wings, a leading edge vortex ring, and a corresponding sharp increase in swimming speed. The ability of this pteropod species to perform the cylindrical overlap-and-fling maneuver twice during each stroke is enabled by its slender body and highly flexible wings. The cylindrical overlap-and-fling mechanism observed here may inspire the design of new soft robotic aquatic vehicles incorporating highly flexible propulsors to take advantage of this novel lift generation technique.

Keywords: Flexible; Insect flight; Leading edge vortex; PIV; Pteropod; Soft robotics.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge