中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Hazardous Materials 2019-Dec

Assessment of indium toxicity to the model plant Arabidopsis.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Hsin-Fang Chang
Shan-Li Wang
Der-Chuen Lee
Silver Hsiao
Yohey Hashimoto
Kuo-Chen Yeh

关键词

抽象

The use of indium in semiconductor products has increased markedly in recent years. The release of indium into the ecosystem is inevitable. Under such circumstances, effective and accurate assessment of indium risk is important. An indispensable aspect of indium risk assessment is to understand the interactions of indium with plants, which are fundamental components of all ecosystems. Physiological responses of Arabidopsis thaliana exposed to indium were investigated by monitoring toxic effects, accumulation and speciation of indium in the plant. Indium can be taken up by plants and is accumulated mainly in roots. Limited indium root-to-shoot translocation occurs because of immobilization of indium in the root intercellular space and blockage of indium by the Casparian band in the endodermis. Indium caused stunted growth, oxidative stress, anthocyanization and unbalanced phosphorus nutrition. Indium jeopardizes phosphate uptake and translocation by inhibiting the accumulation of phosphate transporters PHOSPHATE TRANSPORTER1 (PHT1;1/4), responsible for phosphate uptake, and PHOSPHATE1 (PHO1), responsible for phosphate xylem loading. Organic acid secretion is stimulated by indium exposure. Secreted citrate could function as a potential detoxifier to lower indium uptake. Our findings provide insights into the potential fate and effects of indium in plants and will aid the evaluation of risks with indium contamination.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge