中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Controlled Release 2020-Jul

Catalytic nanographene oxide with hemin for enhanced photodynamic therapy

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Abhishek Sahu
Kiyoon Min
Jin Jeon
Hee Yang
Giyoong Tae

关键词

抽象

Hypoxia is a hallmark of many malignant solid tumors. The inadequate oxygen concentration in the hypoxic regions of a solid tumor impedes the efficiency of photodynamic therapy (PDT) because the generation of reactive oxygen species during the PDT process is directly dependent on the available oxygen. To enhance the therapeutic efficacy of PDT, we have developed a novel catalytic nanoplatform (nGO-hemin-Ce6) by co-encapsulating hemin as a catalase-mimetic nanozyme and chlorin e6 (Ce6) as a photosensitizer into Pluronic-coated nanographene oxide through simple hydrophobic interaction and π-π stacking. The nanosystem showed high cellular uptake in the breast cancer cells but did not show any cytotoxicity in the dark condition. nGO-hemin-Ce6 showed efficient O2 generation capacity in the presence of H2O2, through the catalase-mimetic activity of hemin. In the in vitro cell experiments, only nGO-hemin-Ce6 could show comparable PDT effect in normoxia as well as hypoxia due to the in situ O2 generation capability. Upon intravenous administration, nGO-hemin-Ce6 nanosystem showed high tumor accumulation through passive targeting owing to their small size (~ 50 nm). Within the tumor, hemin generated O2 from the endogenous H2O2 and attenuated hypoxia as evidenced by the reduced expression of HIF-1α, a prominent hypoxia marker. Meanwhile, catalytically generated O2 markedly improved the therapeutic efficiency of PDT in a mouse tumor xenograft model by aiding the light-induced ROS production by Ce6. Compared to a control nanosystem without hemin (nGOCe6), the catalytic nanosystem of nGO-hemin-Ce6 exhibited significantly higher tumor suppression ability.

Keywords: Catalase mimetic; Graphene oxide; Hemin; Hypoxia; Photodynamic therapy.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge