中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain and Development 2019-Dec

d-Glycerate kinase deficiency in a neuropediatric patient.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jörn Sass
Sidney Behringer
Malkanthi Fernando
Elisabetta Cesaroni
Ida Cursio
Alberto Volpini
Claudia Till

关键词

抽象

d-Glyceric aciduria (DGA) due to d-glycerate kinase deficiency (DGKD) is a rare autosomal-recessive inborn error of metabolism that is usually linked to the metabolism of fructose and serine. We describe a Moroccan patient with DGKD whose metabolic defect has been characterized by metabolite studies, sequencing of genomic DNA and by studies on the RNA level. Since birth the index patient presented with severe muscular hypotonia, joint hypermobility and tremor. Enantioselective analysis showed elevated d-glyceric acid in the urine of the patient, but not in that of his parents. DNA analysis revealed homozygosity in the GLYCTK gene for c.517G>T [p.(Val173Leu)], the first mutation reported for exon 3 of this gene, as well as for the c.530-4A>G polymorphism. RNA studies suggest that none of these sequence variants affects splicing. The mother was heterozygous for both sequence variants, the father heterozygous for the first one and homozygous for the polymorphism, which further supports that c.517G>T is the functionally relevant nucleotide change. The conservation of GLYCTK throughout evolution suggests an important biological role of this enzyme, although it is not known yet how mutations are linked to clinical features. Future studies should investigate the molecular defect in a more general way and search for additional roles of GLYCTK beyond its established role in catabolism of serine and fructose.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge