中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioImpacts 2020-Sep

Larval pesticide exposure impacts monarch butterfly performance

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Paola Olaya-Arenas
Kayleigh Hauri
Michael Scharf
Ian Kaplan

关键词

抽象

The long-term decline of monarch butterflies has been attributed to loss of their milkweed (Asclepias sp.) host-plants after the introduction of herbicide-tolerant crops. However, recent studies report pesticide residues on milkweed leaves that could act as a contributing factor when ingested as part of their larval diet. In this study, we exposed monarch larvae to six pesticides (insecticide: clothianidin; herbicides: atrazine, S-metolachlor; fungicides: azoxystrobin, pyraclostrobin, trifloxystrobin) on their primary host-plant, A. syriaca. Each was tested at mean and maximum levels reported from published analyses of milkweeds bordering cropland and thus represent field-relevant concentrations. Monarch lethal and sub-lethal responses were tracked over their complete development, from early instar larvae to adult death. Overall, we found no impact of any pesticide on immature development time and relatively weak effects on larval herbivory or survival to adulthood. Comparatively stronger effects were detected for adult performance; namely, a 12.5% reduction in wing length in response to the fungicides azoxystrobin and trifloxystrobin. These data collectively suggest that monarch responses to host-plant pesticides are largely sublethal and more pronounced in the adult stage, despite exposure only as larvae. This outcome has important implications for risk assessment and the migratory success of monarchs in North America.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge