中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fitoterapia 2020-Sep

Molecular Networking Uncovers Steroidal Saponins of Paris Tengchongensis

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jie Wang
Dan Li
Wei Ni
Xu-Jie Qin
Hui Liu
Ling-Ling Yu
Xue Qiao
Yun-Heng Ji
Li He
Si-Hui Nian

关键词

抽象

Based on a method combining the LC-MS/MS molecular networking strategy with the conventional means of phytochemical research, the chemical constituents and the availability of Paris tengchongensis, a new species found in 2017 from Yunnan Province, were investigated for the first time. The molecular networking showed that this species contained the characteristic steroidal glycosides of the genus Paris by comparison of those of Paris polyphylla var. yunnanensis. Furthermore, the detailed investigation on the 80% EtOH extract of its rhizomes resulted to the isolation of twenty steroidal glycosides including three new spirostane-type saponins, named paristengosides A-C (1-3). Their structures were confirmed by spectroscopic analyses (HRMS and NMR) and chemical methods. The new isolates were evaluated for their cytotoxicities against two human cancer cell lines (HEL and MDA-MB-231), anti-inflammatory effects on a lipopolysaccharide (LPS)-stimulated NO production model in RAW264.7 macrophages, anti-AChE, and antimicrobial activities. The results from the molecular networking and the investigation on the chemical constituents suggested that P. tengchongensis can be used as a potential resource of Rhizoma Paridis.

Keywords: Cytotoxicity; Melanthiaceae; Molecular networking; Paris tengchongensis; Paristengosides A-C.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge