中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2020-Feb

Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yasuhiro Kosuge

关键词

抽象

S-allyl-L-cysteine (SAC) is a sulfur-containing amino acid present in garlic and exhibits a wide range of biological activities such as antioxidant, anti-inflammatory, and anticancer agent. An earlier study demonstrated that SAC ameliorates oxidative damage in a model of experimental stroke. However, the antioxidant property of SAC does not suffice to explain its beneficial effects in terms of the underlying mechanisms. Endoplasmic reticulum (ER) stress and ER stress-induced cell death have been shown to be involved in various neurological diseases such as brain ischemia, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. We have previously demonstrated that SAC exerts significant protective effects against ER stress-induced neurotoxicity in cultured rat hippocampal neurons and organotypic hippocampal slice cultures. Recently, we demonstrated that these results are due to the direct suppression of calpain activity via the binding of SAC to this enzyme's Ca2+-binding domain. We also found that the protective effects of the side-chain-modified SAC derivatives, S-ethyl-L-cysteine (SEC) and S-propyl-L-cysteine (SPC), against ER stress-induced neurotoxicity were more potent than those of SAC in cultured rat hippocampal neurons. In addition, SAC, SEC and SPC have been shown to decrease the production of amyloid-β peptide in the brains of mice with D-galactose-induced aging. These three hydrophilic cysteine-containing compounds have also been shown to exert neuroprotective effects against dopaminergic neuron injury in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this review, we aim to provide a current overview of the protective actions of SAC and the SAC-related compounds, SEC and SPC, in neurodegenerative disease and discuss the promise of SAC as a prototype for developing novel therapeutic drugs for neurological diseases.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge