中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Insect Biochemistry and Molecular Biology 2020-Jul

Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jeanne Friedrichs
Rabea Schweiger
Svenja Geisler
Andreas Mix
Ute Wittstock
Caroline Müller

关键词

抽象

Plants of the Brassicales are defended by a binary system, in which glucosinolates are degraded by myrosinases, forming toxic breakdown products such as isothiocyanates and nitriles. Various detoxification pathways and avoidance strategies have been found that allow different herbivorous insect taxa to deal with the glucosinolate-myrosinase system of their host plants. Here, we investigated how larvae of the leaf beetle species Phaedon cochleariae (Coleoptera: Chrysomelidae), a feeding specialist on Brassicaceae, cope with this binary defence. We performed feeding experiments using leaves of watercress (Nasturtium officinale, containing 2-phenylethyl glucosinolate as major glucosinolate and myrosinases) and pea (Pisum sativum, lacking glucosinolates and myrosinases), to which benzenic glucosinolates (benzyl- or 4-hydroxybenzyl glucosinolate) were applied. Performing comparative metabolomics using UHPLC-QTOF-MS/MS, N-(phenylacetyl) aspartic acid, N-(benzoyl) aspartic acid and N-(4-hydroxybenzoyl) aspartic acid were identified as major metabolites of 2-phenylethyl-, benzyl- and 4-hydroxybenzyl glucosinolate, respectively, in larvae and faeces. This suggests that larvae of P. cochleariae metabolise isothiocyanates or nitriles to aspartic acid conjugates of aromatic acids derived from the ingested benzenic glucosinolates. Myrosinase measurements revealed activity only in second-instar larvae that were fed with watercress, but not in freshly moulted and starved second-instar larvae fed with pea leaves. Our results indicate that the predicted pathway can occur independently of the presence of plant myrosinases, because the same major glucosinolate-breakdown metabolites were found in the larvae feeding on treated watercress and pea leaves. A conjugation of glucosinolate-derived compounds with aspartic acid is a novel metabolic pathway that has not been described for other herbivores.

Keywords: Detoxification; Glucosinolate; Leaf beetle; Metabolism; Phaedon cochleariae.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge