中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmaceutical Research 2015-Apr

pH-responsive nano carriers for doxorubicin delivery.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Shahla Bagherifam
Frode Miltzow Skjeldal
Gareth Griffiths
Gunhild M Mælandsmo
Olav Engebråten
Bo Nyström
Vasif Hasirci
Nesrin Hasirci

关键词

抽象

OBJECTIVE

The aim of this study was to design stimuli-responsive nanocarriers for anti-cancer drug delivery. For this purpose, doxorubicin (DOX)-loaded, polysebacic anhydride (PSA) based nanocapsules (NC) were combined with pH-sensitive poly (L-histidine) (PLH).

METHODS

PSA nano-carriers were first loaded with DOX and were coated with poly L-histidine to introduce pH sensitivity. The PLH-coated NCs were then covered with polyethylene glycol (PEG) to reduce macrophage uptake. The drug release profile from this system was examined in two different buffer solutions prepared as acidic (pH5) and physiological (pH 7.4) media. The physical and chemical properties of the nanocapsules were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV-VIS), and scanning electron microscopy (SEM). In vitro studies of the prepared nanocapsules were conducted in MDA-MB-231 breast cancer cells.

RESULTS

The results obtained by SEM and DLS revealed that nanocapsules have spherical morphology with an average size of 230 nm. Prepared pH sensitive nanocapsules exhibited pH-dependent drug release profile and promising intracellular release of drug. PEGylation of nanoparticles significantly prevented macrophage uptake compared to non-PEGylated particles.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge