中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing 2020-Jan

Physiology, Enkephalin

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Joshua Cullen
Marco Cascella

关键词

抽象

The term opiate, or more appropriately opioids, is commonly referred to as a class of compounds, such as the alkaloids morphine, codeine, and thebaine, derived from the opium poppy (Papaver somniferum), and known and utilized by humankind for millennia for both analgesia and sedation. This class of substances also includes semi-synthetic compounds such as heroin, oxycodone, hydrocodone, and hydromorphone, obtained from these natural molecules as well as fully synthetic compounds, including fentanyl, pethidine, levorphanol, methadone, tramadol, and dextropropoxyphene. Morphine was first isolated in 1806, followed by the isolation of codeine several years later. Following the development of the hypodermic needle and hollow needle in the 1850s, physicians began to use morphine for various surgical procedures as well for the treatment of chronic pain and postoperative pain. With the discovery of different opioid agonists, antagonists, and partial agonist compounds such as nalorphine, various researches postulated and later proved that there are multiple stereospecific opioid binding sites in the central nervous system (CNS) through which they exert their physiological effects. Researchers further surmised that these receptors were most likely targets of endogenous opioid compounds, which researchers then began to isolate and study. In 1975, John Hughes and Hans Kosterlitz reported the first evidence of endogenous opioids in brain extracts that they noted were able to inhibit acetylcholine release from nerves in the guinea pig ileum. Further, they indicated that when treated with the opioid receptor antagonist naloxone, the inhibition was blocked. The compounds that they first isolated were termed enkephalins. Structurally, the enkephalins are pentapeptides that are distinguished in two subgroups by their carboxy-terminal amino acids, leucine, or methionine. As a consequence, the enkephalins either classify as met-encephalins and leu-encephalins, respectively: The enkephalins are one of the three peptide systems that also include beta-endorphins and dynorphins. Of note, the three classes of endogenous opioid peptides share a common N terminus sequence of Tyr-Gly-Gly-Phe and lack a C terminus amide. In molecular terms, Tyr and Phe bind the receptor, and the glycine pair acts as a spacer. These peptides act as neurotransmitters and neuromodulators throughout the nervous system and various end-organ targets. Additionally, research has found that met-enkephalin has an essential role in cell proliferation and tissue organization during development. When discussed in this context, met-enkephalin is often referred to as the opioid growth factor (OGF).

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge