中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2020-Apr

Tolerance mechanism of cadmium in Ceratopteris pteridoides: Translocation and subcellular distribution.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Monashree Bora
Nirmali Gogoi
Kali Sarma

关键词

抽象

Hydroponic experiment was conducted to investigate the biochemical responses and accumulation behaviour of cadmium (Cd) in aquatic fern, Ceratopteris pteridoides, under four different levels of exposure. Plants were grown in 10 μM (CdT1), 20 μM (CdT2), 40 μM (CdT3) and 60 μM (CdT4) concentrations of Cd for 12 consecutive days and Cd accumulation in different plant parts, cell levels and growth medium was estimated. In C. pteridoides, Cd removal kinetics was best described by pseudo-second-order kinetic model. Increased accumulation of Cd in the plants was detected in a concentration dependent manner with maximum under 60 μM of Cd (CdT4) exposure (191.38 mg kg-1, 186.19 mg kg-1 and 1316.34 mg kg-1 in leaves, stems and roots, respectively). Cell wall of C. pteridoides is identified as crucial Cd storage site with the highest (28-69%) accumulation followed by organelles (14-44%) and soluble fraction (6-46%). Increased leaf proline, malondialdehyde (MDA) and protein content with significant reduction (P < 0.05) in chlorophyll concentration and upregulation of antioxidant enzymes catalase (CAT), guaiacol peroxidase (POD) and superoxide dismutase (SOD) reveals the presence of Cd resistance mechanism in C. pteridoides. Calculated higher (>1) bioconcentration factor (BCF) and lower (<1) translocation factor (TF) values evinced the suitability of C. pteridoides in Cd phytostabilization rather than phytoextraction.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge