中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

agrostis stolonifera/glutathione

链接已保存到剪贴板
文章临床试验专利权
10 结果
Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was
Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450
Protein metabolism and expression play important role in plant adaptation to water stress. The objectives of this study were to examine proteomic responses to water stress induced by polyethylene glycol (PEG) in creeping bentgrass (Agrostis stolonifera L.) leaves and to identify proteins associated
γ-Aminobutyric acid (GABA) participates in the regulation of adaptability to abiotic stress in plants. The objectives of this study were to investigate the effects of GABA priming on improving thermotolerance in creeping bentgrass (Agrostis stolonifera) based on analyses of physiology and
Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance
Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera
Knowledge of stress-responsive proteins is critical for further understanding the molecular mechanisms of stress tolerance. The objectives of this study were to establish a proteomic map for a perennial grass species, creeping bentgrass (A. stolonifera L.), and to identify differentially expressed,
γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways

The accumulation and assimilation of dimethylselenide by four plant species.

只有注册用户可以翻译文章
登陆注册
Plants of Agrostis tenuis Sibth., Hordeum vulgare L., Lycopersicon esculentum Mill. and Raphanus sativus L. were grown hydroponically in sealed systems and fumigated with 8 μg m(-3) [(75)Se]-dimethylselenide. The accumulation of (75)Se was measured and the shoot tissues were extracted to examine the

Root carbon and protein metabolism associated with heat tolerance.

只有注册用户可以翻译文章
登陆注册
Extensive past efforts have been taken toward understanding heat tolerance mechanisms of the aboveground organs. Root systems play critical roles in whole-plant adaptation to heat stress, but are less studied. This review discusses recent research results revealing some critical physiological and
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge