中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

alcohol dehydrogenase/arabidopsis thaliana

链接已保存到剪贴板
文章临床试验专利权
页 1 从 91 结果
Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower
Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to
Proper exchange of atmospheric gases is important for normal root and shoot metabolism in plants. This study was conducted to determine how restricted air supply affects foliar carbohydrates, while using the marker enzyme alcohol dehydrogenase (ADH) to report on the oxygenation status of the
Arabidopsis thaliana provides an excellent experimental plant system for molecular genetics because of its remarkably small genome size, near absence of dispersed middle repetitive DNA, and short life cycle. We have cloned and determined the nucleotide sequence of a single-copy gene from A. thaliana
We designate a region of the alcohol dehydrogenase locus (Adh) of the weedy crucifer, Arabidopsis thaliana, as "hypervariable" on the basis of a comparison of sequences from ecotypes Columbia and Landsberg. We found eight synonymous and two replacement mutations in the first 262 nucleotides of exon
The vascular tissue of roots performs essential roles in the physical support and transport of water, nutrients, and signaling molecules in higher plants. The molecular mechanisms underlying the function of root vascular tissue are poorly understood. In this study, we analyzed the expression pattern
In plant cells, many stresses, including low oxygen availability, result in a higher production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can lead to redox-dependent post-translational modification of proteins Cys residues. Here, we studied the effect of
Several mutants have been isolated at the Arabidopsis thaliana (L.) Heynh. alcohol dehydrogenase (ADH) gene locus using allyl alcohol selection on ethyl methanesulfonate (EMS)-mutagenized seeds. Eleven mutants were isolated in the ADH1-A electrophoretic allele, and 21 in the ADH1-S allele. These
mRNA encoding alcohol dehydrogenase (ADH) increases in etiolated seedlings and leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature. The analysis of this response after water stress and abscisic acid (ABA) treatments in Arabidopsis wild type and ABA-deficient and -insensitive
A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of
Zymograms of Arabidopsis alcohol dehydrogenase (ADH; EC 1.1.1.1) show a unique anodal migrating band. Three electrophoretic variants were identified among geographical races and designated slow (S), fast (F), and superfast (A), according to their mobility on Tris-citrate starch gels. In plants ADH
Alcohol dehydrogenase (ADH, EC 1.1.1.1) plays important roles in the metabolism of alcohols and aldehydes. They are often subjected to conformational changes that are critical for the enzymatic activity and have received intensive investigation for horse liver ADH. However, for the large plant ADH
Alcohol dehydrogenases (ADH) catalyze the interconversion between alcohols and aldehydes with the reduction of nicotinamide adenine dinucleotide (NAD(+)) to NADH. In this study, for the first time we report an over-expression and purification strategy for the Arabidosis thaliana ADH (AtADH), and
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge