中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ascaridole/leishmaniasis

链接已保存到剪贴板
文章临床试验专利权
7 结果
To date there are no vaccines against Leishmania and chemotherapy remains the mainstay for the control of leishmaniasis. The drugs currently used for leishmaniasis therapy are significantly toxic, expensive, and result in a growing frequency of refractory infections. In this study, we evaluated the

Mechanism of ascaridole activation in Leishmania.

只有注册用户可以翻译文章
登陆注册
Endoperoxides (EP) are an emerging class of drugs which have potential in antiparasitic therapy, but also in other fields. For malaria therapy the EP artemisinin (Art) and its derivatives are successfully used. We have shown in the past that the EP ascaridole (Asc) is useful for the treatment of
Chenopodium ambrosioides have been used during centuries by native people to treat parasitic diseases. OBJECTIVE To compare the in vivo anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene
Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some
Endoperoxides (EPs) appear to be promising drug candidates against protozoal diseases, including malaria and leishmaniasis. Previous studies have shown that these drugs need an intracellular activation to exert their pharmacological potential. The efficiency of these drugs is linked to the extensive
In countries where leishmaniasis is endemic, there are not very many treatment alternatives and most options have problems associated with their use. Plants and their natural products constitute good sources of interesting lead compounds that could be potentially active against Leishmania.
Clinically, available synthetic chemotherapeutics in the treatment for leishmaniasis are associated with serious complications, such as toxicity and emergence of resistance. Natural products from plants can provide better remedies against the Leishmania parasite and can possibly minimize the
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge