中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

boron/arabidopsis thaliana

链接已保存到剪贴板
文章临床试验专利权
页 1 从 77 结果

bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron.

只有注册用户可以翻译文章
登陆注册
bor1-1 (high boron requiring), an Arabidopsis thaliana mutant that requires a high level of B, was isolated. When the B concentration in the medium was reduced to 3 microM, the expansion of rosette leaves was severely affected in bor1-1 but not in wild-type plants. In a medium containing 30 microM B
Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport.
Boron (B) deficiency affects the expressions of genes involved in major physiological processes. However, signal transduction pathway through which plants are able to sense and transmit B-deprivation signal to the nucleus is unknown. The aim of this work was to research in Arabidopsis thaliana roots
The development of Arabidopsis thaliana was dramatically altered within few hours following boron (B) deprivation. This effect was particularly evident in the apical root meristem. The essentiality of boron in plants has been clearly linked to its structural role in the cell wall, however the
Boron (B) is a micronutrient for plant development, and its deficiency alters many physiological processes. However, the current knowledge on how plants are able to sense the B-starvation signal is still very limited. Recently, it has been reported that B deprivation induces an increase in cytosolic
Aquaporins play essential roles in growth and development including stem elongation in plants. Tonoplast aquaporin AtTIP5;1 has been proposed to positively regulate hypocotyl elongation under high concentrations of boron (high-B) in Arabidopsis thaliana (L.) Heynh. However, the mechanism underlying
Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific
This work was aimed to evaluate the effect of boron (B) toxicity on oxidative damage level, non-enzymatic antioxidant accumulation such as anthocyanin, flavonoid and proline and expression levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT)
Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B) is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate
Soil fertilization is a common practice in modern agriculture, undertaken to prevent nutrient deficiency in crops. However, fertilization is costly and causes environmental pollution. The cultivation of plants that tolerate low nutrient supplies may circumvent this problem. Here, we report the
Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1

WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana.

只有注册用户可以翻译文章
登陆注册
Boron (B) is one of the essential nutrients for plant growth and reproduction. Transcriptome analyses have identified genes regulated by B deficiency, but their function mostly remains elusive. To identify the functions of B deficiency-inducible genes, T-DNA insertion mutants of 10 B
Boron (B) is an essential micronutrient of plants. In the present study, we characterized an Arabidopsis mutant lbt with significant low-boron tolerance that was identified based on our previous mapping of QTL for B efficiency in Arabidopsis. Multiple nutrient-deficiency analyses point out that lbt
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge