中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ceratophyllum oryzetorum/glutathione

链接已保存到剪贴板
文章临床试验专利权
页 1 从 21 结果
4-tert-octylphenol (OP) is a persistent environmental pollutant with an endocrine-disrupting property. In the present study, we examined the effect of various concentrations of OP (0, 0.5, 1, 1.5, 2 and 3 mg L-1) applied to an aquatic plant, the submersed macrophyte Ceratophyllum demersum. The toxic
Organic contaminants of environmental concern such as polychlorinated biphenyls have dispersed widely throughout the ecosystems and accumulate in living organisms, and a variety of adverse biological effects have been reported. In this study, we investigated the effects of 3-chlorobiphenyl in the
Cyanobacterial toxins have adverse effects on mammals, birds and fish and are being increasingly recognised as a potent stress factor and health hazard factor in aquatic ecosystems. Microcystins, cyclic heptapeptides and a main group of the cyanotoxins are mainly retained within the producer cells
To understand the interaction between Zn, an essential micronutrient and Cd, a non-essential element, Cd-10 microM and Zn supplemented (10, 50, 100, and 200 microM) Cd 10 microM treated Ceratophyllum demersum L. (Coontail), a free floating freshwater macrophyte was chosen for the study. Cadmium at
Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its
Laboratory experiments were carried out to investigate pyrene bioaccumulation and its consequent biological responses in submerged macrophyte Ceratophyllum demersum. Plants were exposed to different levels (0.01, 0.02, 0.05, 0.07, 0.1 mg/L) of pyrene for 10 days, and the pyrene content, and total
Cadmium (Cd) contamination of aquatic systems is of major concern since it is a nonessential element and hampers plant growth upon accumulation. The aim of this study was to investigate the Cd accumulation behavior of coontail plant, Ceratophyllum demersum L., toxicity induced and response of the
Although arsenic (As) is a common pollutant worldwide, many questions about As metabolism in nonhyperaccumulator plants remain. Concentration- and tissue-dependent speciation and distribution of As was analyzed in the aquatic plant Ceratophyllum demersum to understand As metabolism in
Cyanobacterial toxins have been shown to have adverse effects on mammals, birds and fish and are therefore being increasingly recognised as a potent stress and health hazard factor in aquatic ecosystems. Microcystins, which are cyclic heptapeptides and a main group of the cyanotoxins, are mainly
We examined the uptake of five heavy metals (Cu, Fe, Ni, Zn, and Mn) in Ceratophyllum demersum L. (hornwort) and Potamogeton alpinus Balb. (pondweed) from Iset' river, Ural region, Russia. This study was conducted in a territory that is highly urbanized where the surface waters are contaminated by a
This paper analyzes the detoxification mechanisms adopted by amino- and organic acids to alleviate Cd toxicity. In addition, with our published data on Zn-Cd interactions, the influence of Zn (200 microM) supplements on the detoxification mechanisms of amino- and organic acids have also been
Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that
During senescence, leaves are deposited on aquatic bodies and decay under water releasing chemical substances that might exert physiological stress to aquatic organisms. Leaf litter alone contributes 30% of the total dissolved organic carbon (DOC) in streams. We investigated the impact of leaves
Recent studies evidence that macrophytes can uptake and bioaccumulate microcystins (MC) from contaminated environments, suggesting their use in phytoremediation. In the present study Ceratophyllum demersum, Egeria densa and Hydrilla verticillata were exposed to cell free crude extracts (CE)
Microcystins (MCs) produced by cyanobacteria in natural environments are a potential risk to the integrity of ecosystems. In this study, the effects of cyanobacterial cell-free crude extracts from a Microcystis aeruginosa bloom containing three MC-congeners MC-LR, -RR, and -YR at environmental
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge