中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

charcoal/arabidopsis

链接已保存到剪贴板
文章临床试验专利权
5 结果
Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh
Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups
The degradation and interconversion of a selected set of pterins (dihydroneopterin, hydroxymethyldihydropterin, dihydroxanthopterin, neopterin, hydroxymethylpterin, xanthopterin, 6-formylpterin, 6-carboxypterin and pterin), spiked to charcoal-treated potato and Arabidopsis thaliana matrix was
The suppression of sprout growth is critical for the long-term storage of potato tubers. 1,4-Dimethylenapthlene (DMN) is a new class of sprout control agent but the metabolic mode of action for this compound has yet to be elucidated. Changes in transcriptional profiles of meristems isolated from

Quantification of hydrogen peroxide in plant tissues using Amplex Red.

只有注册用户可以翻译文章
登陆注册
Reactive oxygen species (ROS) are by-products of photosynthesis and respiration in plant tissues. Abiotic and biotic stressors also induce the production and temporary accumulation of ROS in plants, including hydrogen peroxide (H2O2), whereby they can act as secondary messengers/chemical mediators
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge