中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cholera/nicotine

链接已保存到剪贴板
文章临床试验专利权
页 1 从 63 结果
Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes acute enteritis in pigs. A fragment of the large spike glycoprotein, termed the S1D epitope (aa 636-789), alone and fused with cholera toxin B subunit, were independently cloned into plant expression
A synthetic DNA construct containing cholera toxin B subunit, genetically fused to the surface glycoprotein of rabies virus was expressed in tobacco plants from a seed specific (legumin) promoter. Seed specific expression was monitored by real-time PCR, GM1-ELISA and Western blot analyses. The
Cholera toxin B subunit (CTB) mature protein was stably expressed in transgenic tobacco plants under the control of the CaMV 35S promoter and TMV Omega fragment. Fusion of the PR1b signal peptide coding sequence to the CTB mature protein gene increased the expression level by 24-fold. The
Here, we describe a method to produce a recombinant cholera toxin B subunit in Nicotiana benthamiana plants (CTBp) using the GENEWARE(®) tobacco mosaic virus vector system. Infectious transcripts of the vector RNA are generated in vitro and inoculated on N. benthamiana seedlings. After 11 days, CTBp
A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a
A DNA construct containing the cholera toxin B subunit (CTB) gene genetically fused to a nucleotide sequence encoding three copies of tandemly repeated diabetes-associated autoantigen, the B chain of human insulin, was produced and transferred into low-nicotine tobaccos by Agrobacterium. Integration
The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first
In animals, plants and fungi, cholera toxin (CTX) can activate signalling pathways dependent on heterotrimeric GTP binding proteins (G-proteins). We transformed tobacco plants with a chimeric gene encoding the A1 subunit of CTX regulated by a light-inducible wheat Cab-1 promoter. Tissues of
The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1 % of total soluble
The pentameric B subunit of cholera toxin (CtxB) is an efficient mucosal adjuvant for vaccines. We report the expression of a chimeric protein comprising the synthetic cholera toxin B subunit fused at its C-terminal with rabies surface glycoprotein (G protein) in tobacco plants. The approximately
Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf
Plant-based transient overexpression systems enable rapid and scalable production of subunit vaccines. Previously, we have shown that cholera toxin B subunit (CTB), an oral cholera vaccine antigen, is N-glycosylated upon expression in transgenic Nicotiana benthamiana. Here, we found that

Survival of Vibrio cholerae of food and tobacco.

只有注册用户可以翻译文章
登陆注册
Developing plant based systems for the production of therapeutic recombinant proteins requires the development of efficient expression strategies and characterization of proteins made in heterologous cellular environment. In this study, the expression of cholera toxin B subunit (CtxB) was examined
The production of short peptides as single molecules in recombinant systems is often limited by the low stability of the foreign peptide. In the plant expression system this problem has been solved by translational fusions to recombinant proteins that are highly stable or are able to form complex
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge