中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cicer pinnatifidum/排毒

链接已保存到剪贴板
文章临床试验专利权
10 结果
Chickpea (Cicer arietium L.) produces the antimicrobial compounds (phytoalexins) medicarpin and maackiain in response to infection by microorganisms. Nectria haematococca mating population (MP) VI, a fungus pathogenic on chickpea, can metabolize maackiain and medicarpin to less toxic products. These
In Nectria haematococca the MAK1 gene product converts a chick-pea (Cicer arietinum) phytoalexin, maackiain, into a less toxic compound. The presence of MAK1 in this fungal pathogen is also correlated with high virulence on chick-pea. Previous genetic analysis suggested that MAK1 is located on a
The scientific and technological applications of one of the nanomaterials viz.; carbon dot (C-dots), having extraordinary properties, is becoming an emerging and ongoing research area in recent times. In the present study, we have evaluated the effectiveness of C-dots in reducing arsenic (As)
The plant metallothionein2 from Cicer arietinum (chickpea), cic-MT2, is known to coordinate five divalent metal ions such as Zn(II) or Cd(II), which are arranged in a single metal thiolate cluster. When the Zn(II) form of the protein is titrated with Cd(II) ions in the presence of sulfide ions, an
UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors.
In the present study we are investigating the Cr(VI) reduction potential of a multi-metal tolerant fungus (isolate CR700); isolated from electroplating wastewater. Based on the ITS region sequencing, the isolate was identified as Trichoderma lixii isolate CR700 and able to tolerate
The present study demonstrates the comparative response of two contrasting genotypes (aluminum (Al) tolerant and Al sensitive) of chick pea (Cicer arietinum) against Al stress. The Al-tolerant genotype (RSG 974) showed lesser inhibition of root growth as well as lower oxidative damages, measured in
Some isolates of the plant-pathogenic fungus Nectria haematococca mating population (MP) VI metabolize maackiain and medicarpin, two antimicrobial compounds (phytoalexins) synthesized by chickpea (Cicer arietinum L.). The enzymatic modifications by the fungus convert the phytoalexins to less toxic
Microbial infection of plants or elicitation of cell cultures initiates substantial metabolic changes directed at the induction of defence reactions. The antimicrobial phytoalexins deserve special attention because they represent one essential component of plant resistance. The great structural
Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge