中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

citrullinemia/triglyceride

链接已保存到剪贴板
文章临床试验专利权
15 结果
BACKGROUND Citrin, encoded by SLC25A13, is a component of the malate-aspartate shuttle, which is the main NADH-transporting system in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD), which usually resolves within the first year of life. However, small numbers of adults
Citrin, encoded by SLC25A13, constitutes the malate-aspartate shuttle, the main NADH-shuttle in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Citrin deficiency is predicted to impair hepatic glycolysis and de novo
SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate
Citrin plays a role in the transfer of NADH-reducing equivalent from cytosol to mitochondria as part of the malate-aspartate shuttle in liver. Citrin deficiency may cause an impairment of glycolysis due to an increase in the cytosolic NADH/NAD ratio leading to an energy shortage in the liver.

[Liver transplantation in type II citrullinemia].

只有注册用户可以翻译文章
登陆注册
We reported a case of adult-onset citrullinemia associated with hypertrigliceridemia and diabetes mellitus. A 24-year-old female was healthy until recently. She first felt intermittent headaches and nausea. Then she noticed memory loss and tiredness. Abnormal behavior such as getting lost on the way

Impaired ketogenesis in patients with adult-type citrullinemia.

只有注册用户可以翻译文章
登陆注册
OBJECTIVE To clarify the mechanism causing fatty liver in adult-type citrullinemia, the effect of fasting on blood levels of free fatty acids, triglycerides, and ketone bodies was investigated in two cases. METHODS Blood and urine samples were collected from two patients and healthy volunteers 12,

Adult-onset type II citrullinemia: Current insights and therapy.

只有注册用户可以翻译文章
登陆注册
Citrin deficiency is a recessively inherited metabolic disorder with age-dependent clinical manifestations. It causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Patients with NICCD present with intrahepatic cholestasis in the neonatal period and usually

Diabetes mellitus exacerbates citrin deficiency via glucose toxicity.

只有注册用户可以翻译文章
登陆注册
Citrin is an aspartate/glutamate carrier that composes the malate-aspartate reduced nicotinamide adenine dinucleotide (NADH) shuttle in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD), failure to thrive and dyslipidemia (FTTDCD) and adult-onset type II
UNASSIGNED Citrin-deficient infants present neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), which resolves at 12 months. Thereafter, they have normal liver function associated with hypercholesterolemia, and a preference for lipid-rich carbohydrate-restricted diets. However,
A deficiency of citrin, which is encoded by the SLC25A13 gene, causes both adult-onset type II citrullinemia (CTLN2) and neonatal intrahepatic cholestasis (NICCD). We analyzed 16 patients with NICCD to clarify the clinical features of the disease. Severe intrahepatic cholestasis with fatty liver was

[Treatment and Pathomechanism of Citrin Deficiency].

只有注册用户可以翻译文章
登陆注册
Citrin, encoded by SLC25A13, is a component of the malate-aspartate shuttle, which is the main NADH-transporting system in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD), which usually resolves within the first year of life. However, a small number of adults with
The C57BL/6:Slc23a13(-/-);Gpd2(-/-) double-knockout (a.k.a., citrin/mitochondrial glycerol 3-phosphate dehydrogenase double knockout or Ctrn/mGPD-KO) mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2), making it a
Two clinical phenotypes for citrin deficiency (CD) have been reported. One is adult-onset citrullinemia type II (CTLN2) and another is neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). A child with CD and who had failure to thrive (FTT) and dyslipidemia as main clinical
Identification of the genes responsible for adult-onset type II citrullinemia (CTLN2) and citrin protein function have enhanced our understanding of citrin deficiency. Citrin deficiency is characterized by 1) neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD); 2)

Metabolic basis and treatment of citrin deficiency

只有注册用户可以翻译文章
登陆注册
Citrin deficiency is a hereditary disorder caused by SLC25A13 mutations and manifests as neonatal intrahepatic cholestasis (NICCD), failure to thrive and dyslipidemia (FTTDCD), and adult-onset type II citrullinemia (CTLN2). Citrin is a component of the malate-aspartate nicotinamide adenine
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge