中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

coloboma/dopamine

链接已保存到剪贴板
文章临床试验专利权
14 结果
Many of the molecular components constituting the exocytotic machinery responsible for neurotransmitter release have been identified, yet the precise role played by these proteins in synaptic transmission, and their impact on neural function, has not been resolved. The mouse mutation coloboma is a

Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma.

只有注册用户可以翻译文章
登陆注册
An imbalance between dopaminergic and noradrenergic systems is implicated in hyperactivity disorders such as attention deficit hyperactivity disorder (ADHD) and Tourette syndrome. We have identified the mouse mutant coloboma as an animal model for examining the neurological basis of hyperactivity.
Hyperkinesis and developmental behavioral deficiencies are cardinal signs of attention-deficit hyperactivity disorder. In mice, the mutation coloboma (Cm) corresponds to a contiguous gene defect that results in phenotypic abnormalities including spontaneous hyperactivity, head-bobbing, and ocular

Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma.

只有注册用户可以翻译文章
登陆注册
The SNAP-25 deficient mouse mutant coloboma (Cm/+) is an animal model for investigating the biochemical basis of locomotor hyperactivity. The spontaneous hyperactivity exhibited by coloboma is three times greater than control mice and is a direct result of the SNAP-25 deletion. SNAP-25 is a
Mice heterozygous for the semidominant mutation coloboma (Cm/+) display several distinct pathologies including head bobbing, ophthalmic deformation, and locomotor hyperactivity. The Cm/+ mutation comprises a contiguous gene defect which encompasses deletion of the gene Snap encoding the presynaptic
The mouse mutant coloboma (Cm/+), which exhibits profound spontaneous hyperactivity and bears a deletion mutation on chromosome 2, including the gene encoding synaptosomal protein SNAP-25, has been proposed to model aspects of attention-deficit hyperactivity disorder. Increasing evidence suggests a
The mechanisms underlying the effects of psychostimulants in attention deficit hyperactivity disorder (ADHD) are not well understood, but indirect evidence implicates D2 dopamine receptors. Here we dissect the components of dopaminergic neurotransmission in the hyperactive mouse mutant coloboma to
Low doses of psychostimulants produce beneficial behavioral effects in ADHD patients but the mechanisms underlying the response are not understood. Here we use the hyperactive mouse mutant coloboma to identify D2-like dopamine receptor subtypes that mediate the hyperactivity and response to
Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25

Animal models of attention-deficit/hyperactivity disorder.

只有注册用户可以翻译文章
登陆注册
Attention-deficit hyperactivity disorder (AD/HD) is a clinically heterogenous disorder including hyperactivity, impulsivity, and inattention. Both psychostimulant and non-psychostimulant drugs such as methylphenidate and atomoxetine, respectively, to modulate catecholeamine neurotransmission are
The consequences of a reduction in the presynaptic protein, SNAP-25, were investigated to determine the neurochemical basis of the marked hyperlocomotor activity in coloboma (Cm/+) mice. SNAP-25 is part of the minimal presynaptic machinery necessary for exocytotic neurotransmitter release. Reserpine

Overview of animal models of attention deficit hyperactivity disorder (ADHD).

只有注册用户可以翻译文章
登陆注册
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, behavioral disorder that affects ∼5% to 10% of children worldwide. Although animal models cannot truly reflect human psychiatric disorders, they can provide insight into the disorder that cannot be obtained from

Rodent models of ADHD.

只有注册用户可以翻译文章
登陆注册
The neonatal 6-OHDA-lesioned rat, coloboma mouse, DAT-KO mouse, and spontaneously hypertensive rat (SHR) models all bear a phenotypic resemblance to ADHD in that they express hyperactivity, inattention, and/or impulsivity. The models also illustrate the heterogeneity of ADHD: the initial cause

Animal models of attention-deficit hyperactivity disorder.

只有注册用户可以翻译文章
登陆注册
Attention-deficit hyperactivity disorder (ADHD) involves clinically heterogeneous dysfunctions of sustained attention, with behavioral overactivity and impulsivity, of juvenile onset. Experimental models, in addition to mimicking syndromal features, should resemble the clinical condition in
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge