中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

craniosynostoses/phosphatase

链接已保存到剪贴板
页 1 从 80 结果
OBJECTIVE Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose
Craniosynostosis is the premature fusion of cranial bones. The goal of this study was to determine if delivery of recombinant tissue nonspecific alkaline phosphatase (TNAP) could prevent or diminish the severity of craniosynostosis in a C57BL/6 FGFR2C342Y/+ model of neonatal onset craniosynostosis
Hypophosphatasia (HPP) is a rare inherited disorder of bone metabolism that results in the loss of function of the gene coding for tissue-nonspecific alkaline phosphatase (TNSALP). Patients with HPP have defective bone mineralization as well as craniosynostosis that can be seen in the infantile and
Mutations in fibroblast growth factor receptor 2 (FGFR2), a transmembrane receptor expressed in suture mesenchyme, osteogenic fronts, and dura, have been implicated in the etiopathogenesis of craniosynostosis syndromes. The C278F- and P253R-FGFR2 mutations result in Crouzon and Apert syndromes,
Hypophosphatasia is a rare autosomal recessive inborn error of metabolism characterized by a defective bone mineralisation and deficiency of serum and tissue liver/bone/kidney alkaline phosphatase activity. We report the characterisation of tissue-nonspecific alkaline phosphatase (TNSALP) gene
BACKGROUND The role of genetic phenomena has been given central importance in the development of craniosynostosis. Proponents have dismissed the role of force as a key etiologic factor. Nonetheless, compressive forces on the developing calvarium have been shown to result in premature suture fusion.
Designing an appropriate tissue engineering solution for craniosynostosis (CS) necessitates determination of whether CS-derived cells differ from normal (wild-type, WT) cells and what assays are appropriate to test for differences. Traditional methodologies to statistically compare cellular behavior

Unilateral coronal synostosis: a histomorphometric study.

只有注册用户可以翻译文章
登陆注册
OBJECTIVE This histomorphometric study compared the open and prematurely fused side of the coronal suture in subjects with unilateral coronal synostosis (UCS). METHODS Sutures and parasutural bone were obtained from seven subjects with nonsyndromic UCS during operative correction at 3 to 24 months
We recently reported that cranial bones of Fgfr2(C342Y/+) craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the
OBJECTIVE Histopathological observations and biochemical analysis of sutural bones in nine patients with craniosynostosis were compared with control subjects of the same age range. METHODS Microscopic examination in craniosynostosis showed formation of an active osseous front, with higher
BACKGROUND Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is associated with the aberrant mineralization phenotype of the craniosynostosis syndromes. One critical aspect of mineralization involves the elaboration and transport of pyrophosphate into the extracellular
BACKGROUND Inactivating mutations in tissue-nonspecific alkaline phosphatase (TNAP) cause hypophosphatasia (HPP), which is commonly characterized by decreased bone mineralization. Infants and mice with HPP can also develop craniosynostosis and craniofacial shape abnormalities, although the mechanism
Saethre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome with variable expression. Here we report on a female infant with a de novo balanced translocation 46, XX, t(7;12)(p21.2;p12.3) and presenting at birth brachycephaly, antimongolic palpebral fissures, ocular
Hypophosphatasia (HPP) is an inborn-error-of-metabolism disorder characterized by deficient bone and tooth mineralization due to loss-of function mutations in the gene (Alpl) encoding tissue-nonspecific alkaline phosphatase (TNAP). Alpl(-/-) mice exhibit many characteristics seen in infantile HPP
Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge