中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

d xylose/arabidopsis thaliana

链接已保存到剪贴板
文章临床试验专利权
13 结果
A novel synthesis of nucleotide sugars was conducted to prepare UDP-α-D-xylose and UDP-β-L-arabinose without utilizing protection strategies or advanced purification techniques. Sugar-1-phosphates of D-xylose and L-arabinose were synthesized from their β-glycosylsulfonylhydrazides and evaluated as
Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on
The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we
We have investigated the steady-state and presteady-state kinetics of the cloned H+/hexose cotransporter from Arabidopsis thaliana (STP1) expressed in Xenopus oocytes using the two-electrode voltage-clamp method. Steady-state sugar-dependent currents were measured between -150 and +50 mV as a
l-Arabinose (l-Ara) is a major monosaccharide in plant polysaccharides and glycoproteins, and functions in plant growth and development. However, the potential role of l-Ara during abscisic acid (ABA)-mediated seed germination has been largely ignored. Here, our results showed a function of l-Ara
D-Apiose is a C-branched pentose sugar important for plant cell wall development. Its biosynthesis as UDP-D-apiose involves decarboxylation of the UDP-D-glucuronic acid precursor coupled to pyranosyl-to-furanosyl sugar ring contraction. This unusual multistep reaction is catalyzed within a
An Arabidopsis thaliana gene, At1g56550, was expressed in Pichia pastoris and the recombinant protein was shown to catalyse transfer of D-xylose from UDP-alpha-D-xylose onto methyl alpha-L-fucoside. The product formed was shown by 1D and 2D 1H NMR spectroscopy to be Me alpha-D-Xyl-(1,3)-alpha-L-Fuc,
Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form a RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate
Development, abiotic and biotic stress each affect the physical architecture and chemical composition of the plant cell wall, making maintenance of cell-wall integrity an important component of many plant processes. Cellulose biosynthesis inhibition (CBI) was employed to impair the functional
BACKGROUND Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative
A cDNA clone for a monosaccharide transporter (MST1) was isolated from tobacco, which is most strongly expressed in the various sink tissues of mature tobacco plants: roots, flowers, and young leaves. An open reading frame of 1569 bp codes for a protein with 523 amino acids and a calculated
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge