中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

di 2 ethylhexyl phthalate/brassica

链接已保存到剪贴板
文章临床试验专利权
12 结果

Uptake and toxicity of di-(2-ethylhexyl) phthalate in Brassica chinensis L

只有注册用户可以翻译文章
登陆注册
This work focuses on the bioaccumulation and toxic effects of di-(2-ethylhexyl) phthalate (DEHP) in the leafy vegetable Shanghaiqing (SHQ) (Brassica chinensis L.). The accumulated DEHP amount in the edible part and roots of SHQ increased as the DEHP concentration in the soil increased. DEHP
Soil co-contamination of potentially toxic elements (PTEs) and phthalate esters has become prominent due to its potential adverse effect on human food supply. There is limited information on using wood- and animal-derived biochars for the remediation of co-contaminated soils. Therefore, a pot
Uptake of di(2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for topical phytoremediation were investigated by cultivation of plants in DEHP-contaminated environments. The results showed that major plant organs of B. hispida , including leaves, stems, and fruits, readily

Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil.

只有注册用户可以翻译文章
登陆注册
A pot experiment was conducted to evaluate the effect of biochars on the bioavailability of di-(2-ethylhexyl) phthalate (DEHP) in two soils using Brassica chinensis L. as an indicator plant. The residual concentrations of DEHP tended to be higher in the biochar-amended soils than in the control
Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was
Di-(2-ethylhexyl) phthalate (DEHP) concentrations in the atmosphere and in four vegetable crops including Brassica chinensis L. (bok choy), Brassica campestris L. (field mustard), Vigna unguiculata Walp. (cowpea), and Solanum melongena L. (eggplant) cultivated on land surrounding a plastic
In order to investigate and assess the distribution of pathalic acid easters (PAEs) in agricultural products from typical areas of the Pearl River Delta, South China, 131 agricultural products were sampled for determination of 6 PAEs priority pollutants classified by the U. S. EPA by GC-FID. The
Phthalates esters (PAEs) are ubiquitous contaminants in terrestrial system and PAEs can be degraded to monoester metabolites (mPAEs) both in soil and plants, which have equal or even greater biological activity compared to their parent compounds. Until now, little is known about the comparative
Mono-(2-ethylhexyl) phthalate (MEHP) is the primary monoester transformation product of the commonly used plasticizer, di-2-ethylhexyl phthalate (DEHP), and has been frequently detected in various environmental compartments (e.g., soil, biosolids, plants). Plants growing in contaminated soils can
Phthalate ester (PAE) accumulation in crops poses great risks to human health and has aroused great concern. Here, we investigated variations in di-n-butylphthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) accumulation by various Chinese flowering cabbage cultivars and revealed their variation
A multiresidue method has been developed for the determination of emerging pollutants in leafy and root vegetables. Selected compounds were 6 perfluoroalkyl compounds (5 perfluorocarboxylic acids and perfluorooctanesulfonic acid), 3 non-ionic surfactants (nonylphenol and nonylphenolethoxylates), 8
Phthalate esters (PAEs) in environments have become a public concern due to their harmful impacts on human and environments, and waste/reclaimed water irrigation maybe one of their sources in agricultural soil. A field experiment was setup to analyze the impacts of reclaimed water irrigation on
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge