中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dihydroxycinnamic acid/ischemia

链接已保存到剪贴板
文章临床试验专利权
4 结果
BACKGROUND Reperfusion injury is a phenomenon that occurs when tissues are subjected to ischaemia for a variable period of time, after which they are reperfused. Many factors have been implicated in the cause of reperfusion injury including free radicals and neutrophils. Caffeic acid
OBJECTIVE This experimental study was designed to determine the changes in tissue levels of malondialdehyde, end-product of lipid peroxidation (MDA), reduced glutathione (GSH) and xanthine oxidase (XO) and the effect of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE) on these
Superoxide radicals have been implicated in the pathogenesis of aging, cataract, ischemia-reperfusion, cancer and inflammatory diseases. In the present work, we found that deferiprone (L1), an iron-chelating drug, and dietary dihydroxycinnamic acids (catechols) were much more effective at protecting
Caffeic acid (3,4-dihydroxycinnamic acid), one of the most common phenolic acids, frequently occurs in fruits, grains and dietary supplements for human consumption as simple esters with quinic acid or saccharides, and are also found in traditional Chinese herbs. Caffeic acid derivatives occur as
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge