中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

encephalomyelitis/hypoxia

链接已保存到剪贴板
页 1 从 42 结果
MicroRNA 182 is important for the clonal expansion of CD4+ T cells (Th) following IL-2 stimulation and is a potential therapeutic target for autoimmune diseases. In the present study, we investigated the role of microRNA 182 in the differentiation of pro-inflammatory CD4+ T
While the pathologic events associated with multiple sclerosis (MS), diffuse axonal injury, cognitive damage, and white matter plaques, have been known for some time, the etiology of MS is still unknown and therapeutic efforts are somewhat disappointing. This may be due to a lack of fundamental
BACKGROUND Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are
Hypoxia-like tissue alterations, characterized by the upregulation of hypoxia-inducible factor-1α (HIF-1α), have been described in the normal appearing white matter and pre-demyelinating lesions of multiple sclerosis (MS) patients. As HIF-1α regulates the transcription of a wide set of genes
While hypoxic pre-conditioning protects against neurological disease the underlying mechanisms have yet to be fully defined. As chronic mild hypoxia (CMH, 10% O2) triggers profound vascular remodeling in the central nervous system (CNS), the goal of this study was to examine the protective potential
In the past, the lesions of experimental allergic encephalomyelitis (EAE) have been induced to localize around brain tissue damaged by anoxia or direct physical or chemical attack. The procedure for producing the requisite antecedent brain injury has been simplified by use of a single subcutaneous

SerpinB1 expression in Th17 cells depends on hypoxia-inducible factor 1-alpha

只有注册用户可以翻译文章
登陆注册
SerpinB1, previously known as MNEI (monocyte/neutrophil elastase inhibitor), has been well established to maintain the survival of neutrophils. Our recent studies showed that SerpinB1 is also the signature gene of IL-17-producing γδT cells and Th17 cells, and its expression is maintained by IL-23

Experimental autoimmune encephalomyelitis from a tissue energy perspective.

只有注册用户可以翻译文章
登陆注册
Increasing evidence suggests a key role for tissue energy failure in the pathophysiology of multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), a commonly used model of MS, have been instrumental in illuminating the mechanisms that may be involved in compromising

Phenytoin protects central axons in experimental autoimmune encephalomyelitis.

只有注册用户可以翻译文章
登陆注册
Axon degeneration is a major contributor to non-remitting deficits in multiple sclerosis (MS). Thus the development of therapies to provide protection of axons has elicited considerable interest. Voltage-gated sodium channels have been implicated in the injury cascade leading to axonal damage, and
Ischemic brain injury is a dynamic process involving oxidative stress, inflammation, cell death and the activation of endogenous adaptive and regenerative mechanisms depending on the activation of transcription factors such as hypoxia-inducible factor 1-alpha. Accordingly, we have previously
Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest
BACKGROUND Multiple sclerosis (MS) is characterized by a combination of inflammatory and neurodegenerative processes variously dominant in different stages of the disease. Thus, immunosuppression is the goal standard for the inflammatory stage, and novel remyelination therapies are pursued to

Neurological deficits caused by tissue hypoxia in neuroinflammatory disease.

只有注册用户可以翻译文章
登陆注册
OBJECTIVE To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS EAE was induced in Dark Agouti rats by immunization with recombinant myelin oligodendrocyte glycoprotein and adjuvant. Tissue
While several studies have shown that hypoxic preconditioning suppresses development of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), no one has yet examined the important clinically relevant question of whether mild hypoxia can impact the progression of
Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge