中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

endopolygalacturonase/atrophy

链接已保存到剪贴板
文章临床试验专利权
6 结果
The fungus Fusarium circinatum causes pitch canker disease on mature pine trees and root rot and damping-off of pine seedlings. Endopolygalacturonases (endoPGs) play a major role during penetration of plants by fungi. Digestion of the pectic polysaccharides in the plant primary cell walls is one of
The basidiomycete Chondrostereum purpureum produces several plant cell wall-degrading enzymes, including endopolygalacturonase (endoPG). Degenerate oligonucleotide primers were designed according to conserved regions of endoPG genes from various fungi, plants, and bacteria and used to amplify
The yeast Kluyveromyces marxianus strain BKM Y-719 produces an efficient pectin-degrading endopolygalacturonase (EPG) that cleaves the internal alpha-1,4-D-glycosidic linkages to yield oligomers of varying sizes. The EPG1 gene encoding this industrially important EPG was cloned by using the
Cryphonectria cubensis causes a serious Eucalyptus canker disease. Fungal cell wall degrading enzymes (CWDEs) are important during the early stages of interaction of the fungus with Eucalyptus. To improve our understanding of the molecular regulation of the interaction of Eucalyptus and C. cubensis,
Endpolygalacturonase I from Stereum purpureum has been identified as a causative substance for the silver-leaf disease in apples. It possesses a unique pro-sequence in the C-terminal region that lacks endpolygalacturonases from any other origin. In this study, we analyzed and compared enzymatic
Alternaria core rot is a major postharvest disease of apple fruit in several countries of the world, including Greece. The study was conducted aiming to identify the disease causal agents at species level, investigate the aggressiveness of Alternaria spp. isolates and the susceptibility of different
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge