中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

epilepsy/phosphatase

链接已保存到剪贴板
页 1 从 399 结果

Elevated serum alkaline phosphatase in epilepsy: Effect of age and treatment.

只有注册用户可以翻译文章
登陆注册
Purpose: The major goal of epilepsy management using antiepileptic drug therapy is to attain seizure freedom without any adverse effects. However, the reported adverse effects of antiepileptic drugs on the hematological and biochemical profiles are subject of considerable debate in clinical
OBJECTIVE The aim of this study was to identify the causal gene in a consanguineous Moroccan family with temporo-occipital polymicrogyria, psychiatric manifestations, and epilepsy, previously mapped to the 6q16-q22 region. METHODS We used exome sequencing and analyzed candidate variants in the
The progressive myoclonus epilepsy of Lafora type is an autosomal recessive disorder caused by mutations in the EPM2A gene. EPM2A is predicted to encode a putative tyrosine phosphatase protein, named laforin, whose full sequence has not yet been reported. In order to understand the function of the
Phosphatase and tensin homolog (PTEN) gene mutations are associated with a spectrum of clinical disorders characterized by skin lesions, macrocephaly, hamartomatous overgrowth of tissues, and an increased risk of cancers. Autism has rarely been described in association with these variable clinical
The immediate early gene-encoded enzyme, MAP kinase phosphatase 1 (MKP-1), is thought to be a key element in controlling cellular signalling pathways activated by MAP kinases. Since MAP kinase have been demonstrated to participate in neuronal stimulus-transcription coupling following seizure
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Seizures can be controlled for most epilepsy patients after drug therapy, but at least 20% of patients develop intractable epilepsy (IE). The mechanism by which IE causes neuronal damage has not been completely
The EPM2A gene, encoding the dual-phosphatase laforin, is mutated in a fatal form of progressive myoclonus epilepsy known as Lafora disease (LD). The EPM2A gene, by differential splicing of its transcripts, is known to encode two laforin isoforms having distinct carboxyl termini; a major isoform
Progressive myoclonus epilepsy of the Lafora type or Lafora disease (EPM2; McKusick no. 254780) is an autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration and glycogen-like intracellular inclusion bodies (Lafora bodies). A gene for EPM2 previously
Lafora's disease (LD; OMIM 254780) is an autosomal recessive form of progressive myoclonus epilepsy characterized by seizures and cumulative neurological deterioration. Onset occurs during late childhood and usually results in death within ten years of the first symptoms. With few exceptions,
There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in
Excitotoxic damage represents the major mechanism leading to cell death in many human neurodegenerative diseases such as ischemia, trauma and epilepsy. Caused by an excess of glutamate that acts on metabotropic and ionotropic excitatory receptors, excitotoxicity activates several death signaling
Aberrations in the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway constitute a subclass of congenital disorders of glycosylation, and mutations in seven genes involved in this pathway have been identified. Among them, mutations in PIGV and PIGO, which are involved in the late stages

Potential role of pyridoxal-5'-phosphate phosphatase/chronopin in epilepsy.

只有注册用户可以翻译文章
登陆注册
Changes in actin dynamics and pyridoxal-5'-phosphate (PLP) metabolisms are closely related to the pathophysiological profiles of the epileptic hippocampus. Recently, it has been reported that PLP phosphatase/chronophin (PLPP/CIN) directly dephosphorylates actin-depolymerizing factor (ADF)/cofilin as

[Status of the phosphatases in the peripheral blood elements in epilepsy].

只有注册用户可以翻译文章
登陆注册
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge