中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ethyl ketone/inflammation

链接已保存到剪贴板
文章临床试验专利权
7 结果
Methyl Ethyl Ketone Peroxide (MEKP) is a highly toxic clear liquid used as a solvent. It is a strong oxidizing agent and a corrosive. Acute and chronic toxicity can occur as an occupational hazard. Ingestion is associated with corrosive burns leading to stricture formation, inhalational pneumonitis,
Objective: To investigate the efficacy of active compounds of Chanqin (CQ) granules on PM2.5-induced airway neurogenic inflammation in vivo, and to elucidate the underlying mechanisms of action. Methods:
Methyl ethyl ketone peroxide (MEKP) is an unstable organic peroxide used in the manufacture of acrylic resins, as a hardening agent for fiberglass-reinforced plastics, and as a curing agent for unsaturated polyester resins. It is commercially available as a 40% to 60% solution in dimethyl phthalate
During inhalational exposure to irritants stimulation of the trigeminal nerve endings in the nasal mucosa or other biochemical mechanisms might initiate inflammatory processes. Increased sensitivity of this physiological system in response to chemical stimulation is postulated in subjects reporting
Screening of newly synthesized organic peroxides for tumor initiating/promoting activity would be greatly facilitated if predictive methodologies could be developed using topical exposures shorter than those required for definitive tumor assessment in mouse skin models. Nine organic peroxides
To evaluate the oncogenic potential of methylethylketoxime (MEKO), CD-1 mice (50/sex/group) and F-344 rats (50/sex/group) were coexposed 6 h/day, 5 days/wk for 18 mo (mice) or 26 mo (rats) via whole-body inhalation exposures to target vapor concentrations of 0, 15, 75, and 375 ppm (actual
Occupational exposure to volatile organic compounds (VOCs) may cause hematopoietic malignancy, either by single exposure to benzene or possibly due to a concomitant exposure to several VOCs. Since oxidative stress, inflammation and DNA repair pathways are closely involved in cancer development, the
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge