中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

eucalyptus dolorosa/triglyceride

链接已保存到剪贴板
文章临床试验专利权
5 结果
Two organic deposits accumulated in a Kraft pulp mill during pulping of Eucalyptus globulus wood and throughout a TCF (totally chlorine free) bleaching sequence were characterized. One deposit was collected after cooking and an oxygen delignification stage while the other was collected after

Fungal degradation of lipophilic extractives in eucalyptus globulus wood

只有注册用户可以翻译文章
登陆注册
Solid-state fermentation of eucalypt wood with several fungal strains was investigated as a possible biological pretreatment for decreasing the content of compounds responsible for pitch deposition during Cl2-free manufacture of paper pulp. First, different pitch deposits were characterized by gas
Applying a bioactivity-guided isolation strategy for the ethanolic extract of crown gall tumours induced on an Eucalyptus tereticornis tree, two new compounds in addition to a known one were isolated. The new compounds were identified as an amino acid derivative named
Free and esterified sitosterol, the main lipophilic constituents of eucalypt wood extractives, have been associated with the formation of pitch deposits during manufacturing of environmentally-sound paper pulp from Eucalyptus globulus wood. These, and other lipophilic compounds, were analyzed by gas
In this work, untargeted metabolomics was used to unveil the impact of a Eucalyptus (E. nitens) lipophilic outer bark extract on the metabolism of triple negative breast cancer (TNBC) and non-tumour breast cells. Integrative analysis of culture medium, intracellular polar metabolites and cellular
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge