中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

fanconi anemia/tyrosine

链接已保存到剪贴板
14 结果
CONCLUSIONS Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress.
Fanconi anemia (FA) is an autosomal recessive disorder with a high risk of malignancies including acute myeloid leukemia and squamous cell carcinoma. There is a constant search out of new potential therapeutic molecule to combat this disorder. In most cases, patients with FA develop haematological
The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control
Hematopoietic progenitor cells from Fanconi anemia (FA) group C (FA-C) patients display hypersensitivity to the apoptotic effects of gamma interferon (IFN-gamma) and constitutively express a variety of IFN-dependent genes. Paradoxically, however, STAT1 activation is suppressed in IFN-stimulated FA

Fanconi Anemia complementation group C protein in metabolic disorders.

只有注册用户可以翻译文章
登陆注册
Given importance of 22-Fanconi Anemia (FA) proteins together to act in a signaling pathway in preventing deleterious clinical symptoms, e.g. severe bone marrow failure, congenital defects, an early onset of aging and cancer, studies on each FA protein become increasingly attractive. However, an

Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

只有注册用户可以翻译文章
登陆注册
OBJECTIVE Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes

B cell responses to oxidative stress.

只有注册用户可以翻译文章
登陆注册
B-lymphocytes are exposed to a reduction/oxidation environment during activation or inflammatory process, and the antioxidant systems are functional to protect themselves against harmful reactive oxygen species (ROS). The crucial roles of thioredoxin-2 (Trx-2) and a DNA repair enzyme APE/Ref-1 in

Genetic instability in inherited and sporadic leukemias.

只有注册用户可以翻译文章
登陆注册
Genetic instability due to increased DNA damage and altered DNA repair is of central significance in the initiation and progression of inherited and sporadic human leukemias. Although very rare, some inherited DNA repair insufficiency syndromes (e.g., Fanconi anemia, Bloom's syndrome) have added
The Fanconi anemia (FA) group C protein, FANCC, interacts with STAT1 following stimulation with IFN-gamma and is required for proper docking of STAT1 at the IFN-gamma receptor alpha-chain (IFN-gammaRalpha, IFN-gammaR1). Consequently, loss of a functional FANCC results in decreased activation of
A point mutation (V617F) of tyrosine kinase Janus kinase 2 (JAK2) is found in the majority of patients with myeloproliferative neoplasms (MPNs) and an aberrant signaling pathway induced by constitutively active JAK2 V617F mutant is a hallmark of MPNs. Cells transformed by JAK2 V617F mutant exhibited
Pulmonary sarcomatoid carcinomas (PSC) are a rare group of lung cancer with a median overall survival of 9-12 months. PSC are divided into five histotypes, challenging to diagnose and treat. The identification of PSC biomarkers is warranted, but PSC molecular profile remains to be defined. Herein, a
Tumors with anaplastic lymphoma kinase (ALK) fusion rearrangements, including non-small-cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. Although mutations in
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge