中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

faradiol/calendula officinalis

链接已保存到剪贴板
文章临床试验专利权
11 结果
The main compounds of lipophilic extracts of flower heads of marigold (Calendula officinalis L.) are triterpendiol esters, mainly faradiol laurate, faradiol myristate and faradiol palmitate. These faradiol-3-O-monoesters have been quantified for the first time by means of reversed phase HPLC with
Calendula officinalis L. has been largely known for its topical anti-inflammatory properties; however, there are no experimental evidences about its antiphlogistic effect at the gastric level. To investigate whether marigold might exert an activity against gastric inflammation, a CH2Cl2 extract
Pentacyclic triterpene mono- and diesters have been isolated from Calendula officinalis flowers. GC-MS, APCI-Exactive Orbitrap HR-MS and NMR allowed to identify the triterpene skeleton in various samples (different triterpene mixtures from Calendula n-hexane extract). NMR provided evidence that
Dichloromethane extracts of dried flowers of Calendula officinalis contain eight known bioactive triterpendiol monoesters, namely, faradiol-3-O-palmitate, faradiol-3-O-myristate, faradiol-3-O-laurate, arnidiol-3-O-palmitate, arnidiol-3-O-myristate, arnidiol-3-O-laurate, calenduladiol-3-O-palmitate
A method for the efficient preparative purification of faradiol 3-O-laurate, palmitate and myristate, the major anti-inflammatory triterpenoid esters in the flower heads of the medicinal plant Calendula officinalis has been developed. Gram quantities of the individual compounds were obtained with 96
Separation and isolation of the genuine faradiol esters (1, 2) from flower heads of Marigold (Calendula (officinalis L., Asteraceae) could be achieved by means of repeated column chromatography (CC) and HPLC for the first time. Structure elucidation of faradiol-3-myristic acid ester 1,
Rings A, D and E of faradiol (1), and ring E of both arnidiol (10) and calenduladiol (4) have been subjected to various selective chemical manipulations to modify polarity, water affinity, H-bonding, sterics, and number of aromatic groups of these anti-inflammatory natural compounds. A total of 15
In the present study, we evaluated the protective action of cream preparations containing seven different types of marigold and rosemary extracts in vivo in healthy volunteers with experimentally induced irritant contact dermatitis (ICD). Marigold and rosemary extracts in base cream DAC (Deutscher
By means of a bioassay-oriented fractionation of the CO2 extract of Calendula flowers, the triterpenoids are shown as the most important anti-inflammatory principles of the drug. Among them, the faradiol monoester appears to be the most relevant principle for the activity of the drug, due to its
PHARMACOLOGICAL RELEVANCE: Presentation of the scratch assay as a convenient and inexpensive in vitro tool to gain first insights in the wound healing potential of plant extracts and natural compounds. OBJECTIVE The present study deals with the optimization of the scratch assay which can be used as
The effects of pressure and co-solvent on the extraction of anti-inflammatory faradiol esters in marigold (Calendula officinalis L.) were investigated by supercritical fluid extraction at laboratory and pilot scales. Pressures higher than 300 bar and modifier (ethanol) concentrations ranging from 0
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge