中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

fructose/breast neoplasms

链接已保存到剪贴板
页 1 从 107 结果
BACKGROUND Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed
Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is a tumor suppressor that frequently down-regulated in cancers, especially breast cancer. Here, we provide both supporting and contradicting evidences about the expression pattern and function of FBP1 in breast cancer.
A new methacrylic fructose glycomonomer is synthesized and copolymerized with N-isopropyl acrylamide by reversible addition fragmentation chain transfer (RAFT) poly-merization. By additional copolymerization of the analog mannose, glucose, and galactose glycomonomers, a set of glycopolymers is

d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

只有注册用户可以翻译文章
登陆注册
The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery
6-Deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[(18)F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and
6-Deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[(18)F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and
Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their
Rapid proliferation and Warburg effect make cancer cells consume plenty of glucose, which induces a low glucose micro-environment within the tumor. Up to date, how cancer cells keep proliferating in the condition of glucose insufficiency still remains to be explored. Recent studies have revealed a
Polymeric nanoparticles with long circulation time hold great promise for anti-cancer drug delivery. An enhanced circulation effect of rod-like micelles has been reported, yet efficient intracellular delivery, especially their interactions with cells during endocytosis, still remains inconsistent.

Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence.

只有注册用户可以翻译文章
登陆注册
In the past century the western world has found a way to combat most communicative diseases; however, throughout that time the prevalence of obesity, hyperglycemia, and hyperlipidemia have drastically increased. These symptoms characterize metabolic syndrome-a non-communicable disease which has
PFKFB (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) catalyses the synthesis and degradation of Fru-2,6-P2 (fructose-2,6-bisphosphate), a key modulator of glycolysis and gluconeogenesis. The PFKFB3 gene is extensively involved in cell proliferation owing to its key role in carbohydrate
While the shape effect of nanoparticles on cellular uptake has been frequently studied, no consistent conclusions are available currently. The controversy mainly focuses on the cellular uptake of elongated (i.e., filaments or rod-like micelles) as compared to spherical (i.e., micelles and vesicles)
d-Fructose modified poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru) diblock amphiphile is synthesized via Cu(I)-catalyzed click chemistry, which self-assembles with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL-PEG-Fru/TPGS mixed micelles (PPF MM). It has been proven that
Fructose transporter GLUT5 is overexpressed in breast cancer cell lines, but not in healthy tissue. Micelles based on fructose, which were found to be low fouling, showed a high uptake by breast cancer cells (MCF-7 and MDA-MB-231 cells), but only negligible uptake by macrophages.

PURPOSE
Paclitaxel is an integral component of primary therapy for breast and epithelial ovarian cancers, but less than half of these cancers respond to the drug. Enhancing the response to primary therapy with paclitaxel could improve outcomes for women with both
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge