中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

fumarase/arabidopsis

链接已保存到剪贴板
文章临床试验专利权
10 结果
A cDNA EST clone encoding the C-terminal portion of Arabidopsis thaliana fumarase was identified by homology analysis. A fragment of cDNA encoding the N-terminal region of fumarase was amplified from a cDNA library using PCR and cloned. Genomic DNA corresponding to the coding region of fumarase was
Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the
Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows
Inhibition of fumarase activity in the light has been studied in Arabidopsis in relation to the involvement of phytochrome. Using knockout phytochrome mutants, we observed that the main regulator of FUM1 gene transcription, encoding the mitochondrial form of fumarase, is phytochrome A. The active
The Arabidopsis genome has two fumarase genes, one of which encodes a protein with mitochondrial targeting information (FUM1) while the other (FUM2) does not. We show that a FUM1-green fluorescent protein fusion is directed to mitochondria while FUM2-red fluorescent protein remains in the cytosol.
The biochemical diversity in the plant kingdom is estimated to well exceed 100,000 distinct compounds (Weckwerth, 2003) and 4000 to 20,000 metabolites per species seem likely (Fernie et al., 2004). In recent years extensive progress has been made towards the identification of enzymes and regulatory
Photosynthesis is especially sensitive to environmental conditions and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to
In chilling conditions (5°C), salicylic acid (SA)-deficient mutants (sid2, eds5 and NahG) of Arabidopsis thaliana produced more biomass than wild type (Col-0), whereas the SA overproducer cpr1 was extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored using
Fumarate and malate are known intermediates of the TCA cycle, a mitochondrial metabolic pathway generating NADH for respiration. Arabidopsis thaliana and other Brassicaceae contain an additional cytosolic fumarase (FUM2) that functions in carbon assimilation and nitrogen use. Here, we report the
Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge