中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

hexadecane/zea mays

链接已保存到剪贴板
文章临床试验专利权
5 结果

Factors affecting lycopene oxidation in oil-in-water emulsions.

只有注册用户可以翻译文章
登陆注册
Evidence that dietary lycopene decreases the risk for a number of health conditions has generated new opportunities for the addition of lycopene to functional foods. This work examined the potential of oil-in-water emulsions as a lycopene delivery system for foods. Oil-in-water emulsions containing
A microbial consortium degrading the high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) pyrene, chrysene, benzo[a]pyrene and perylene in a two-liquid-phase reactor was studied. The highest PAH-degrading activity was observed with silicone oil as the water-immiscible phase;
The purpose of this research was to determine how surfactant micelles influence iron partitioning and iron-promoted lipid oxidation in oil-in-water emulsions. Lipids containing ferric ions were used to produce oil-in-water emulsions, and continuous-phase iron concentrations in emulsions were
A new cell was evaluated for studying the migration of components of plastic food packaging materials into various food simulating solvents. Data obtained using this cell to study the migration of styrene from polystyrene at 40 and 70 degrees C are presented. Food simulating solvents tested were:
Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge