中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ischemia/tyrosine

链接已保存到剪贴板
页 1 从 1222 结果
Tyrosine phosphorylation is an important means for regulating post-ischemic signal transduction. In this article, brain ischemia was induced by four-vessel occlusion, and the effect of ischemia/reperfusion on proline-rich tyrosine kinase 2 (Pyk2) was studied. Tyrosine phosphorylation of Pyk2 in
Akt (Protein kinase B, PKB), a serine/threonine kinase, plays a critical role in cell development, growth, and survival. Akt phosphorylation mediates a neuroprotective effect against ischemic injury. Recently, a protein-tyrosine phosphatase-1B (PTP1B) inhibitor (KY-226) was developed to elicit
Vascular endothelial growth factor (VEGF) receptor-2 (KDR/flk-1) has a tyrosine kinase domain and, once activated, induces the autophosphorylation of the tyrosine residues. The phosphorylated KDR/flk-1 can be a substrate for intracellular protein tyrosine phosphatases (PTPs). In the present study,
Acute kidney injury (AKI) is a highly prevalent clinical syndrome with high mortality and morbidity. Previous studies indicated that inflammation promotes tubular damage and plays a key role in AKI progress. Spleen tyrosine kinase (Syk) has been linked to macrophage-related inflammation in AKI. Up
Endothelial nitric oxide synthase-derived NO and its derivative, peroxynitrite (ONOO(-)), suppresses oxygen consumption by nitration of mitochondrial proteins after reperfusion. However, very few nitrated proteins are identified to date. In this paper, ischemia/reperfusion (I/R) injury was induced
Cerebral ischemia induces rapid efflux of glutamate into the extracellular space contributing to excessive activation of glutamate receptors in postsynaptic cells, particularly N-methyl-D-aspartate (NMDA) receptors, which triggers the neuron lesion through calcium overload. Our studies indicated
Platelet activation and the formation of platelet microaggregates in coronary vessels play pivotal roles in myocardial ischemia and reperfusion injury. The Fc receptor gamma-chain (FcR gamma) is coexpressed with glycoprotein (GP) VI, forming a platelet collagen receptor, and the activation of
Tyrosine phosphorylation in the gerbil hippocampus after a transient ischemia was analyzed by immunoblotting and immunohistochemistry. In control hippocampus, the phosphotyrosine was detected in many proteins of 165 to 10 kDa and the immunostain showed a distinct distribution. The ischemic insult
BACKGROUND Dramatic alterations of protein tyrosine phosphorylation have been found during the ischemia-reperfusion (IR) period of human lung transplantation. IR also induces activation of p38 mitogen-activated protein kinase (p38) in the heart and kidney. The objective of the present study was to
The effects of ischemia/reperfusion on the levels of protein tyrosine phosphorylation in the synaptosome of gerbil hippocampus and the effects of three drugs, ketamine (KT), a noncompetitive antagonist of NMDA receptor, nifedipine (ND), a voltage gated calcium channel (VGCC) antagonist and
Reperfusion injury to tissue following an ischemic event occurs as a consequence of an acute inflammatory response that can cause significant morbidity and mortality. Components of both the innate (complement, immunoglobulin, monocytes, and neutrophils) and adaptive (B and T lymphocytes) immune
It has been reported that the Src family kinases-mediated tyrosine phosphorylation of alpha(1C) subunits of L-type voltage-gated calcium channels (L-VGCCs) potentiates the channel currents. In this study, we evaluated the alterations in the tyrosine phosphorylation level of alpha(1C) and in the
The effects of suppression of postsynaptic density protein 95 (PSD-95) expression on the increased tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit NR2A and interactions of Src and Fyn with NR2A after brain ischemia were investigated by immunoprecipitation and immunoblotting.
BACKGROUND Retinal neovascularisation occurs under the influence of angiogenic factors that are induced by hypoxia, like vascular endothelial growth factor (VEGF), which is one of the major mediators. PTK/ZK inhibits VEGF signal transduction by blocking the tyrosine kinase of all three VEGF
Protein tyrosine phosphorylation is thought to play an important role in the regulation of neural function. We reported previously that CL100, a cytoplasmic type protein tyrosine phosphatase (PTP), was induced after transient forebrain ischemia. In the present study, changes in the mRNA levels after
加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge